In mathematics, a hyperconnected space is a topological spaceX that cannot be written as the union of two proper closed sets (whether disjoint or non-disjoint). The name irreducible space is preferred in algebraic geometry.
For a topological space X the following conditions are equivalent:
A space which satisfies any one of these conditions is called hyperconnected or irreducible.
An irreducible set is a subset of a topological space for which the subspace topology is irreducible. Some authors do not consider the empty set to be irreducible (even though it vacuously satisfies the above conditions).