Induction cooking heats a cooking vessel by magnetic induction, instead of by thermal conduction from a flame, or an electrical heating element. Because inductive heating directly heats the vessel, very rapid increases in temperature can be achieved.
In an induction cooker, a coil of copper wire is placed under the cooking pot and an alternating electric current is passed through it. The resulting oscillating magnetic field induces a magnetic flux which repeatedly magnetises the pot, treating it like the lossy magnetic core of a transformer. This produces large eddy currents in the pot, which because of the resistance of the pot, heats it.
For nearly all models of induction cooktops, a cooking vessel must be made of, or contain, a ferromagnetic metal such as cast iron or some stainless steels. However, copper, glass, non magnetic stainless steels, and aluminum vessels can be placed on a ferromagnetic interface disk which functions as a conventional hotplate.
Induction cooking is quite efficient, which means it puts less waste heat into the kitchen, can be quickly turned off, and has safety advantages compared to gas hobs (cooktops). Hobs are also usually easy to clean, because the hob itself does not get very hot.