ICAD may refer to:
ICAD (Corporate history: ICAD, Inc., Concentra, KTI, Dassault Systemes) is a Knowledge-Based Engineering (KBE) system that enables users to encode design knowledge using a semantic representation that can be evaluated for parasolid output. ICAD has an open architecture that can utilize all the power and flexibility of the underlying language.
KBE, as implemented via ICAD, received a lot of attention due to the remarkable results that appeared to take little effort. ICAD allowed one example of end-user computing that in a sense is unparalleled. Most ICAD developers were degreed engineers. Systems developed by ICAD users were non-trivial and consisted of highly complicated code. In the sense of end-user computing, ICAD was the first to allow the power of a domain tool to be in the hands of the user at the same time being open to allow extensions as identified and defined by the domain expert or SME.
A COE article looked at the resulting explosion of expectations (see AI Winter), which were not sustainable. However, such a bubble burst does not diminish the existence of capability that would exist if expectations and use were properly managed.
DNA fragmentation factor subunit alpha (DFFA), also known as Inhibitor of caspase-activated DNase (ICAD), is a protein that in humans is encoded by the DFFA gene.
Apoptosis is a cell death process that removes toxic and/or useless cells during mammalian development. The apoptotic process is accompanied by shrinkage and fragmentation of the cells and nuclei and degradation of the chromosomal DNA into nucleosomal units. DNA fragmentation factor (DFF) is a heterodimeric protein of 40-kD (DFFB) and 45-kD (DFFA) subunits. DFFA is the substrate for caspase-3 and triggers DNA fragmentation during apoptosis. DFF becomes activated when DFFA is cleaved by caspase-3. The cleaved fragments of DFFA dissociate from DFFB, the active component of DFF. DFFB has been found to trigger both DNA fragmentation and chromatin condensation during apoptosis. Two alternatively spliced transcript variants encoding distinct isoforms have been found for this gene.
The C-terminal domain of DFFA (DFF-C) consists of four alpha-helices, which are folded in a helix-packing arrangement, with alpha-2 and alpha-3 packing against a long C-terminal helix (alpha-4). The main function of this domain is the inhibition of DFFB by binding to its C-terminal catalytic domain through ionic interactions, thereby inhibiting the fragmentation of DNA in the apoptotic process. In addition to blocking the DNase activity of DFFB, the C-terminal region of DFFA is also important for the DFFB-specific folding chaperone activity, as demonstrated by the ability of DFFA to refold DFFB.