The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET) is a type of transistor used for amplifying or switching electronic signals.
Although the MOSFET is a four-terminal device with source (S), gate (G), drain (D), and body (B) terminals, the body (or substrate) of the MOSFET is often connected to the source terminal, making it a three-terminal device like other field-effect transistors. Because these two terminals are normally connected to each other (short-circuited) internally, only three terminals appear in electrical diagrams. The MOSFET is by far the most common transistor in both digital and analog circuits, though the bipolar junction transistor was at one time much more common.
The main advantage of a MOSFET over a regular transistor is that it requires very little current to turn on (less than 1mA), while delivering a much higher current to a load (10 to 50 times or more).
In enhancement mode MOSFETs, a voltage drop across the oxide induces a conducting channel between the source and drain contacts via the field effect. The term "enhancement mode" refers to the increase of conductivity with increase in oxide field that adds carriers to the channel, also referred to as the inversion layer. The channel can contain electrons (called an nMOSFET or nMOS), or holes (called a pMOSFET or pMOS), opposite in type to the substrate, so nMOS is made with a p-type substrate, and pMOS with an n-type substrate (see article on semiconductor devices). In the less common depletion mode MOSFET, detailed later on, the channel consists of carriers in a surface impurity layer of opposite type to the substrate, and conductivity is decreased by application of a field that depletes carriers from this surface layer.
A MISFET is a metal–insulation–semiconductor field-effect transistor.
MISFET is a more general term than MOSFET and a synonym to insulated gate field-effect transistor (IGFET). All MOSFETs are MISFETs, but not all MISFETs are MOSFETs. The insulator in a MISFET is a dielectric which can be silicon oxide (in a MOSFET), but other materials can also be employed. The generic term for the dielectric is gate dielectric, since the dielectric lies directly below the gate electrode and above the channel of the MISFET. The term metal is used for the gate material, even though it is usually highly doped polysilicon or some other nonmetal.