Hypervelocity is very high velocity, approximately over 3,000 meters per second (6,700 mph, 11,000 km/h, 10,000 ft/s, or Mach 8.8). In particular, hypervelocity is velocity so high that the strength of materials upon impact is very small compared to inertial stresses. Thus, even metals behave like fluids under hypervelocity impact. Extreme hypervelocity results in vaporization of the impactor and target. For structural metals, hypervelocity is generally considered to be over 2,500 m/s (5,600 mph, 9,000 km/h, 8,200 ft/s, or Mach 7.3). Meteorite craters are also examples of hypervelocity impacts.
Hypervelocity refers to velocities in the range from a few kilometers per second to some tens of kilometers per second. This is especially relevant in the field of space exploration and military use of space, where hypervelocity impacts (e.g. by space debris or an attacking projectile) can result in anything from minor component degradation to the complete destruction of a spacecraft or missile. The impactor, as well as the surface it hits, can undergo temporary liquefaction. The impact process can generate plasma discharges, which can interfere with spacecraft electronics.