Hilbert cube
In mathematics, the Hilbert cube, named after David Hilbert, is a topological space that provides an instructive example of some ideas in topology. Furthermore, many interesting topological spaces can be embedded in the Hilbert cube; that is, can be viewed as subspaces of the Hilbert cube (see below).
Definition
The Hilbert cube is best defined as the topological product of the intervals [0, 1/n] for n = 1, 2, 3, 4, ... That is, it is a cuboid of countably infinite dimension, where the lengths of the edges in each orthogonal direction form the sequence
.
The Hilbert cube is homeomorphic to the product of countably infinitely many copies of the unit interval [0, 1]. In other words, it is topologically indistinguishable from the unit cube of countably infinite dimension.
If a point in the Hilbert cube is specified by a sequence
with
, then a homeomorphism to the infinite dimensional unit cube is given by
.
The Hilbert cube as a metric space
It is sometimes convenient to think of the Hilbert cube as a metric space, indeed as a specific subset of a separable Hilbert space (i.e. a Hilbert space with a countably infinite Hilbert basis).
For these purposes, it is best not to think of it as a product of copies of [0,1], but instead as