A silo (from the Greek σιρός – siros, "pit for holding grain") is a structure for storing bulk materials. Silos are used in agriculture to store grain (see grain elevators) or fermented feed known as silage. Silos are more commonly used for bulk storage of grain, coal, cement, carbon black, woodchips, food products and sawdust. Three types of silos are in widespread use today: tower silos, bunker silos, and bag silos.
There are different types of cement silos such as the low-level mobile silo and the static upright cement silo, which are used to hold and discharge cement and other powder materials such as PFA (Pulverised Fuel Ash). The low-level silos are fully mobile with capacities from 10 to 75 tons. They are simple to transport and are easy to set up on site. These mobile silos generally come equipped with an electronic weighing system with digital display and printer. This allows any quantity of cement or powder discharged from the silo to be controlled and also provides an accurate indication of what remains inside the silo. The static upright silos have capacities from 20 to 80 tons. These are considered a low-maintenance option for the storage of cement or other powders. Cement silos can be used in conjunction with bin-fed batching plants.
A binary file is a computer file that is not a text file. Many binary file formats contain parts that can be interpreted as text; for example, some computer document files containing formatted text, such as older Microsoft Word document files, contain the text of the document but also contain formatting information in binary form.
Binary files are usually thought of as being a sequence of bytes, which means the binary digits (bits) are grouped in eights. Binary files typically contain bytes that are intended to be interpreted as something other than text characters. Compiled computer programs are typical examples; indeed, compiled applications are sometimes referred to, particularly by programmers, as binaries. But binary files can also mean that they contain images, sounds, compressed versions of other files, etc. — in short, any type of file content whatsoever.
Some binary files contain headers, blocks of metadata used by a computer program to interpret the data in the file. The header often contains a signature or magic number which can identify the format. For example, a GIF file can contain multiple images, and headers are used to identify and describe each block of image data. The leading bytes of the header would contain text like GIF87a or GIF89a that can identify the binary as a GIF file. If a binary file does not contain any headers, it may be called a flat binary file.
In Unix and operating systems inspired by it, the file system is considered a central component of the operating system. It was also one of the first parts of the system to be designed and implemented by Ken Thompson in the first experimental version of Unix, dated 1969.
Like in other operating systems, the filesystem provides information storage and retrieval, as well as interprocess communication, in the sense that the many small programs that traditionally comprise a Unix system can store information in files so that other programs can read these, although pipes complemented it in this role starting with the Third Edition. Additionally, the filesystem provides access to other resources through so-called device files that are entry points to terminals, printers, and mice.
The rest of this article uses "Unix" as a generic name to refer to both the original Unix operating system as well as its many workalikes.
The filesystem appears as a single rooted tree of directories. Instead of addressing separate volumes such as disk partitions, removable media, and network shares as separate trees (as done in MS-DOS and Windows: each "drive" has a drive letter that denotes the root of its file system tree), such volumes can be "mounted" on a directory, causing the volume's file system tree to appear as that directory in the larger tree. The root of the entire tree is denoted /
.
Bin and similar can mean:
"bin" can mean:
Grain is an upcoming German/Turkish/French science fiction film written and directed by Semih Kaplanoğlu.
Grain is set in the near future when human survival is threatened by war and famine. Scientists and geneticists must combine forces to create a sustainable food source.
The film is produced by Kaplanoğlu's company, Kaplan Films; Heimatfilm (Germany) and Arte France Cinéma (France). Part of the film was shot in Detroit, Michigan.
Grain is a stream cipher submitted to eSTREAM in 2004 by Martin Hell, Thomas Johansson and Willi Meier. It has been selected for the final eSTREAM portfolio for Profile 2 by the eSTREAM project. Grain is designed primarily for restricted hardware environments. It accepts an 80-bit key and a 64-bit IV. The specifications do not recommended a maximum length of output per (key, iv) pair. A number of potential weaknesses in the cipher have been identified and corrected in Grain 128a which is now the recommended cipher to use for hardware environments providing both 128bit security and authentication.
Grains' 160-bit internal state consists of an 80-bit linear feedback shift register (LFSR) and an 80-bit non-linear feedback shift register (NLFSR). Grain updates one bit of LFSR and one bit of NLFSR state for every bit of ciphertext released by a nonlinear filter function. The 80-bit NLFSR is updated with a nonlinear 5-to-1 Boolean function and a 1 bit linear input selected from the LFSR. The nonlinear 5-to-1 function takes as input 5 bits of the NLFSR state. The 80-bit LFSR is updated with a 6-to-1 linear function. During keying operations the output of the cipher is additionally fed-back as linear inputs into both the NLFSR and LFSR update functions.
Polycrystalline or multicrystalline materials, or polycrystals are solids that are composed of many crystallites of varying size and orientation. Crystallites are also referred to as grains. They are small or even microscopic crystals and form during the cooling of many materials. Their orientation can be random with no preferred direction, called random texture, or directed, possibly due to growth and processing conditions. Fiber texture is an example of the latter. The areas where crystallite grains meet are known as grain boundaries.
Most inorganic solids are polycrystalline, including all common metals, many ceramics, rocks and ice. The extent to which a solid is crystalline (crystallinity) has important effects on its physical properties.Sulfur, while usually polycrystalline, may also occur in other allotropic forms with completely different properties. Although crystallites are referred to as grains, powder grains are different, as they can be composed of smaller polycrystalline grains themselves.