Functional (mathematics)
In mathematics, and particularly in functional analysis and the calculus of variations, a functional is a function from a vector space into its underlying scalar field, or a set of functions of the real numbers. In other words, it is a function that takes a vector as its input argument, and returns a scalar. Commonly the vector space is a space of functions, thus the functional takes a function for its input argument, then it is sometimes considered a function of a function (a higher-order function). Its use originates in the calculus of variations where one searches for a function that minimizes a certain functional. A particularly important application in physics is searching for a state of a system that minimizes the energy functional.
Functional details
Duality
The mapping
is a function, where x0 is an argument of a function f.
At the same time, the mapping of a function to the value of the function at a point
is a functional, here x0 is a parameter.
Provided that f is a linear function from a linear vector space to the underlying scalar field, the above linear maps are dual to each other, and in functional analysis both are called linear functionals.