ARC is a lossless data compression and archival format by System Enhancement Associates (SEA). It was very popular during the early days of networked dial-up BBS. The file format and the program were both called ARC. The ARC program made obsolete the previous use of a combination of the SQ program to compress files and the LU program to create .LBR archives, by combining both compression and archiving functions into a single program. Unlike ZIP, ARC is incapable of compressing entire directory trees. The format was subject to controversy in the 1980s—an important event in debates over what would later be known as open formats.
The .arc file extension is often used for several file archive-like file types. For example, the Internet Archive uses its own ARC format to store multiple web resources into a single file. The FreeArc archiver also uses .arc extension, but uses a completely different file format.
Nintendo uses an unrelated 'ARC' format for resources, such as MIDI, voice samples, or text, in GameCube and Wii games. Several unofficial extractors exist for this type of ARC file.
A (simple) arc in finite projective geometry is a set of points which satisfies, in an intuitive way, a feature of curved figures in continuous geometries. Loosely speaking, they are sets of points that are far from "line-like" in a plane or far from "plane-like" in a three-dimensional space. In this finite setting it is typical to include the number of points in the set in the name, so these simple arcs are called k-arcs. An important generalization of the k-arc concept, also referred to as arcs in the literature, are the (k, d)-arcs.
In a finite projective plane π (not necessarily Desarguesian) a set A of k (k ≥ 3) points such that no three points of A are collinear (on a line) is called a k - arc. If the plane π has order q then k ≤ q + 2, however the maximum value of k can only be achieved if q is even. In a plane of order q, a (q + 1)-arc is called an oval and, if q is even, a (q + 2)-arc is called a hyperoval.
Every conic in the Desarguesian projective plane PG(2,q), i.e., the set of zeros of an irreducible homogeneous quadratic equation, is an oval. A celebrated result of Beniamino Segre states that when q is odd, every (q + 1)-arc in PG(2,q) is a conic. This is one of the pioneering results in finite geometry.
In mathematics, and more specifically in graph theory, a directed graph (or digraph) is a graph, or set of vertices connected by edges, where the edges have a direction associated with them. In formal terms, a directed graph is an ordered pair G = (V, A) (sometimes G = (V, E)) where
It differs from an ordinary or undirected graph, in that the latter is defined in terms of unordered pairs of vertices, which are usually called edges, arcs, or lines.
A directed graph is called a simple digraph if it has no multiple arrows (two or more edges that connect the same two vertices in the same direction) and no loops (edges that connect vertices to themselves). A directed graph is called a directed multigraph or multidigraph if it may have multiple arrows (and sometimes loops). In the latter case the arrow set forms a multiset, rather than a set, of ordered pairs of vertices.
A fracture is the separation of an object or material into two or more pieces under the action of stress. The fracture of a solid usually occurs due to the development of certain displacement discontinuity surfaces within the solid. If a displacement develops perpendicular to the surface of displacement, it is called a normal tensile crack or simply a crack; if a displacement develops tangentially to the surface of displacement, it is called a shear crack, slip band, or dislocation.Fracture strength or breaking strength is the stress when a specimen fails or fractures.
The word fracture is often applied to bones of living creatures (that is, a bone fracture), or to crystals or crystalline materials, such as gemstones or metal. Sometimes, in crystalline materials, individual crystals fracture without the body actually separating into two or more pieces. Depending on the substance which is fractured, a fracture reduces strength (most substances) or inhibits transmission of light (optical crystals). A detailed understanding of how fracture occurs in materials may be assisted by the study of fracture mechanics.
Fracture is a 2004 New Zealand film written and directed by Larry Parr and based on the novel by Maurice Gee. The film is set in Wellington and stars Kate Elliott, Jared Turner and Australian John Noble. The film was met with positive reviews and was the second highest grossing local film at the New Zealand box office in 2004 behind In My Father's Den.
A young solo mother (Elliott) loves her son and his needs are foremost, but she still has room in her heart for her very broken brother (Turner), even as her fundamentalist mother cruelly rejects her. But when the brother is responsible for a woman's broken neck, during his burglary of her house, families are changed as crisis amplifies and at times the young mother seems to be the only adult.
A single crack can shatter everything.
The film had originally been set for a 2003 release but was delayed during production by the dissolution of director Larry Parr's production company Kahukura Productions.
Fracture is the second studio album by Leeds Jazz-Rock ensemble Roller Trio following the success of their Mercury Prize nominated debut album Roller Trio. It was released in 2014 and in The Guardian John Fordham said [Roller Trio] "have come up with a second album that’s different and diverse, and on a live show it must be a gas". London Jazz News said "This is a marker laid down by a group operating at the vanguard of contemporary jazz." The album received 4 stars in All About Jazz where the reviewer Phil Barnes said "This ability to blend the accessible and the serious, the melodic and the experimental is a real gift".