In the various subfields of physics, there exist two common usages of the term flux, both with rigorous mathematical frameworks.
One could argue, based on the work of James Clerk Maxwell,[4] that the transport definition precedes the more recent way the term is used in electromagnetism. The specific quote from Maxwell is "In the case of fluxes, we have to take the integral, over a surface, of the flux through every element of the surface. The result of this operation is called the surface integral of the flux. It represents the quantity which passes through the surface."
In addition to these few common mathematical definitions, there are many looser, but equally valid, usages to describe observations from other fields such as biology, the arts, history, and humanities.
Contents |
![]() |
Look up flux in Wiktionary, the free dictionary. |
The word flux comes from Latin: fluxus means "flow", and fluere is "to flow".[5] As fluxion, this term was introduced into differential calculus by Isaac Newton.
Flux is surface bombardment rate. There are many fluxes used in the study of transport phenomena. Each type of flux has its own distinct unit of measurement along with distinct physical constants. Seven of the most common forms of flux from the transport literature are defined as:
These fluxes are vectors at each point in space, and have a definite magnitude and direction. Also, one can take the divergence of any of these fluxes to determine the accumulation rate of the quantity in a control volume around a given point in space. For incompressible flow, the divergence of the volume flux is zero.
Chemical molar flux of a component A in an isothermal, isobaric system is defined in above-mentioned Fick's first law as:
where:
is the diffusion coefficient (m2/s) of component A diffusing through component B,
is the concentration (mol/m3) of species A.[7]
This flux has units of mol·m−2·s−1, and fits Maxwell's original definition of flux.[4]
Note: Failed to parse (Missing texvc executable; please see math/README to configure.): \nabla
("nabla") denotes the del operator.
For dilute gases, kinetic molecular theory relates the diffusion coefficient D to the particle density n = N/V, the molecular mass M, the collision cross section Failed to parse (Missing texvc executable; please see math/README to configure.): \sigma , and the absolute temperature T by
where the second factor is the mean free path and the square root (with Boltzmann's constant k) is the mean velocity of the particles.
In turbulent flows, the transport by eddy motion can be expressed as a grossly increased diffusion coefficient.
In quantum mechanics, particles of mass m in the state Failed to parse (Missing texvc executable; please see math/README to configure.): \psi(r,t)
have a probability density defined as
So the probability of finding a particle in a unit of volume, say Failed to parse (Missing texvc executable; please see math/README to configure.): d^3x , is
Then the number of particles passing through a perpendicular unit of area per unit time is
This is sometimes referred to as the flux density.[8]
An example of the first definition of flux is the magnitude of a river's current, that is, the amount of water that flows through a cross-section of the river each second. The amount of sunlight that lands on a patch of ground each second is also a kind of flux.
To better understand the concept of flux in Electromagnetism, imagine a butterfly net. The amount of air moving through the net at any given instant in time is the flux. If the wind speed is high, then the flux through the net is large. If the net is made bigger, then the flux would be larger even though the wind speed is the same. For the most air to move through the net, the opening of the net must be facing the direction the wind is blowing. If the net opening is parallel to the wind, then no wind will be moving through the net. Perhaps the best way to think of flux abstractly is "how much stuff goes through your thing", where the stuff is a field and the thing is the virtual surface.
As a mathematical concept, flux is represented by the surface integral of a vector field,
where:
is the resulting flux.
The surface has to be orientable, i.e. two sides can be distinguished: the surface does not fold back onto itself. Also, the surface has to be actually oriented, i.e. we use a convention as to flowing which way is counted positive; flowing backward is then counted negative.
The surface normal is directed accordingly, usually by the right-hand rule.
Conversely, one can consider the flux the more fundamental quantity and call the vector field the flux density.
Often a vector field is drawn by curves (field lines) following the "flow"; the magnitude of the vector field is then the line density, and the flux through a surface is the number of lines. Lines originate from areas of positive divergence (sources) and end at areas of negative divergence (sinks).
See also the image at right: the number of red arrows passing through a unit area is the flux density, the curve encircling the red arrows denotes the boundary of the surface, and the orientation of the arrows with respect to the surface denotes the sign of the inner product of the vector field with the surface normals.
If the surface encloses a 3D region, usually the surface is oriented such that the influx is counted positive; the opposite is the outflux.
The divergence theorem states that the net outflux through a closed surface, in other words the net outflux from a 3D region, is found by adding the local net outflow from each point in the region (which is expressed by the divergence).
If the surface is not closed, it has an oriented curve as boundary. Stokes' theorem states that the flux of the curl of a vector field is the line integral of the vector field over this boundary. This path integral is also called circulation, especially in fluid dynamics. Thus the curl is the circulation density.
We can apply the flux and these theorems to many disciplines in which we see currents, forces, etc., applied through areas.
The flux of electric and magnetic field lines is frequently discussed in electrostatics. This is because Maxwell's equations in integral form involve integrals like above for electric and magnetic fields.
For instance, Gauss's law states that the flux of the electric field out of a closed surface is proportional to the electric charge enclosed in the surface (regardless of how that charge is distributed). The constant of proportionality is the reciprocal of the permittivity of free space.
Its integral form is:
where:
is the electric field,
is the area of a differential square on the surface A with an outward facing surface normal defining its direction,
is the charge enclosed by the surface,
is the permittivity of free space
is the integral over the surface A.
Either Failed to parse (Missing texvc executable; please see math/README to configure.): \oint_A \epsilon_0 \mathbf{E} \cdot d\mathbf{A}
or Failed to parse (Missing texvc executable; please see math/README to configure.): \oint_A \mathbf{E} \cdot d\mathbf{A} is called the electric flux.
If one considers the flux of the electric field vector, E, for a tube near a point charge in the field the charge but not containing it with sides formed by lines tangent to the field, the flux for the sides is zero and there is an equal and opposite flux at both ends of the tube. This is a consequence of Gauss's Law applied to an inverse square field. The flux for any cross-sectional surface of the tube will be the same. The total flux for any surface surrounding a charge q is q/ε0.[9]
In free space the electric displacement vector D = ε0 E so for any bounding surface the flux of D = q, the charge within it. Here the expression "flux of" indicates a mathematical operation and, as can be seen, the result is not necessarily a "flow".
Faraday's law of induction in integral form is:
where:
is an infinitesimal element (differential) of the closed curve C (i.e. a vector with magnitude equal to the length of the infinitesimal line element, and direction given by the tangent to the curve C, with the sign determined by the integration direction).
The magnetic field is denoted by Failed to parse (Missing texvc executable; please see math/README to configure.): \mathbf{B} . Its flux is called the magnetic flux. The time-rate of change of the magnetic flux through a loop of wire is minus the electromotive force created in that wire. The direction is such that if current is allowed to pass through the wire, the electromotive force will cause a current which "opposes" the change in magnetic field by itself producing a magnetic field opposite to the change. This is the basis for inductors and many electric generators.
The flux of the Poynting vector through a surface is the electromagnetic power, or energy per unit time, passing through that surface. This is commonly used in analysis of electromagnetic radiation, but has application to other electromagnetic systems as well.
In general, flux in biology relates to movement of a substance between compartments. There are several cases where the concept of flux is important.
One Month to Live, also called 1 Month 2 Live, was a 5-issue limited series comic book produced by Marvel Comics on a weekly basis in 2010. It was written by Rick Remender in collaboration with Stuart Moore, John Ostrander, and Rob Williams. The original concept was devised by Marvel editor Steve Wacker with the premise "What would you do with one month to change the world?" The storyline centers on a protagonist with terminal cancer, in response to Wacker's aunt having been diagnosed with cancer.
The four writers found the experience of writing the story to be especially poignant, as all had personal experiences with cancer—in particular, Remender, whose father survived a bout with cancer in 2008, and Ostrander, whose wife Kim Yale died of cancer in 1997.
In an accident with toxic waste, Dennis Sykes gains superpowers and an untreatable cancer. With a life expectancy of barely a month, Sykes launches himself on a brief career as a superhero, in an attempt to make a difference in the world while he still can, assisting the Fantastic Four in saving Ego the Living Planet from a cancerous infection and averting Hammerhead's attempt to take control of his neighbourhood. Although use of his powers made his condition worse, Sykes made a positive impression on many heroes with his dedication to doing the right thing, accepting training from Spider-Man and receiving honorary membership with the FF and the Avengers before he finally died of stress from his final battle.
In general, flux in biology relates to movement of a substance between compartments. There are several cases where the concept of flux is important.
Dupont, DuPont, Du Pont, duPont, or du Pont is a common French surname. It may refer to:
Dupont are an electronic music band from Sweden.
DuPont was formed as a collaboration of the vocalist Johan Damm and the electronic musicians Danucci and Riccardo in 1999. Following the demo 'Deliver', they signed with the German label Lip Records who released their first single 'Behave'. Their debut album 'Ukraina' was released in 2001. In 2002, Dupont supported Covenant on their 'Northern Light' tour.
There was a lengthy gap between their first and second albums, during which time Juan left the project to eventually be replaced on lead vocals by Riccardo, with the band's music moving in an electro-pop direction on their 2005 album 'Intermezzo'. Their third album came out 2009 and is called "Entering the Ice Age".
Album: Behave Catalogue No: Pain0001 Release date: 2000 Format: CDM
Album: Ukraina Catalogue No: Pain0004 Release date: 2001 Format: CD
Album: Intermezzo Catalogue No: Pain0009 Release date: 2005 Format: CD
Album: Entering the ice age Catalogue No: PROCD020 Release date: 2009 Format: CD