Altitude or height is defined based on the context in which it is used (aviation, geometry, geographical survey, sport, and more). As a general definition, altitude is a distance measurement, usually in the vertical or "up" direction, between a reference datum and a point or object. The reference datum also often varies according to the context. Although the term altitude is commonly used to mean the height above sea level of a location, in geography the term elevation is often preferred for this usage.

Vertical distance measurements in the "down" direction are commonly referred to as depth.

Contents

Altitude in aviation and in spaceflight [link]

Vertical Distance Comparison

In aviation, the term altitude can have several meanings, and is always qualified by either explicitly adding a modifier (e.g. "true altitude"), or implicitly through the context of the communication. Parties exchanging altitude information must be clear which definition is being used.[1]

Aviation altitude is measured using either Mean Sea (MSL) or local ground level (Above Ground Level, or AGL) as the reference datum.

Pressure altitude divided by 100 feet (30m) as the flight level, and is used above the transition altitude (18,000 feet (5,500 m) in the US, but may be as low as 3,000 feet (910 m) in other jurisdictions); so when the altimeter reads 18,000 ft on the standard pressure setting the aircraft is said to be at "Flight level 180". When flying at a Flight Level, the altimeter is always set to standard pressure (29.92 inHg / 1013.25 mbar).

On the flight deck, the definitive instrument for measuring altitude is the pressure altimeter, which is an aneroid barometer with a front face indicating distance (feet or metres) instead of atmospheric pressure.

There are several types of aviation altitude:

  • Indicated altitude is the reading on the altimeter when the altimeter is set to the local barometric pressure at Mean Sea Level.
  • Absolute altitude is the height of the aircraft above the terrain over which it is flying. Also referred to feet/metres above ground level (AGL).
  • True altitude is the actual elevation above mean sea level. It is Indicated Altitude corrected for non-standard temperature and pressure. In UK aviation radiotelephony usage, the vertical distance of a level, a point or an object considered as a point, measured from mean sea level; this is referred to over the radio as altitude.(see QNH)[2]
  • Height is the elevation above a ground reference point, commonly the terrain elevation. In UK aviation radiotelephony usage, the vertical distance of a level, a point or an object considered as a point, measured from a specified datum; this is referred to over the radio as height, where the specified datum is the airfield elevation (see QFE)[2]
  • Pressure altitude is the elevation above a standard datum air-pressure plane (typically, 1013.25 millibars or 29.92" Hg and 15 °C). Pressure altitude and indicated altitude are the same when the altimeter is set to 29.92" Hg or 1013.25 millibars.
  • Density altitude is the altitude corrected for non-ISA International Standard Atmosphere atmospheric conditions. Aircraft performance depends on density altitude, which is affected by barometric pressure, humidity and temperature. On a very hot day, density altitude at an airport (especially one at a high elevation) may be so high as to preclude takeoff, particularly for helicopters or a heavily loaded aircraft.

These types of altitude can be explained more simply as various ways of measuring the altitude:

  • Indicated altitude – the altimeter reading
  • Absolute altitude – altitude in terms of the distance above the ground directly below it
  • True altitude – altitude in terms of elevation above sea level
  • Height – altitude in terms of the distance above a certain point
  • Pressure altitude – altitude in terms of the air pressure
  • Density altitude – altitude in terms of the density of the air

Altitude regions [link]

The Earth's atmosphere is divided into several altitude regions:[3]

  • Troposphere — surface to 8,000 metres (5.0 mi) at the poles – 18,000 metres (11 mi) at the equator, ending at the Tropopause.
  • Stratosphere — Troposphere to 50 kilometres (31 mi)
  • Mesosphere — Stratosphere to 85 kilometres (53 mi)
  • Thermosphere — Mesosphere to 675 kilometres (419 mi)
  • Exosphere — Thermosphere to 10,000 kilometres (6,200 mi)

High altitude and low air pressure [link]

Regions on the Earth's surface (or in its atmosphere) that are high above mean sea level are referred to as high altitude. High altitude is sometimes defined to begin at 2,400 metres (8,000 ft) above sea level.[4][5][6]

At high altitude, atmospheric pressure is lower than that at sea level. This is due to two competing physical effects: gravity, which causes the air to be as close as possible to the ground; and the heat content of the air, which causes the molecules to bounce off each other and expand.[7]

Because of the lower pressure, the air expands as it rises, which causes it to cool.[8][9] Thus, high altitude air is cold, which causes a characteristic alpine climate. This climate dramatically affects the ecology at high altitude.

Relation between temperature and altitude in Earth's atmosphere [link]

The environmental lapse rate (ELR), is the rate of decrease of temperature with altitude in the stationary atmosphere at a given time and location. As an average, the International Civil Aviation Organization (ICAO) defines an international standard atmosphere (ISA) with a temperature lapse rate of 6.49 K(°C)/1,000 m (3.56 °F or 1.98 K(°C)/1,000 Ft) from sea level to 11 kilometres (36,000 ft). From 11 to 20 kilometres (36,000 to 66,000 ft), the constant temperature is −56.5 °C (−69.7 °F), which is the lowest assumed temperature in the ISA. The standard atmosphere contains no moisture. Unlike the idealized ISA, the temperature of the actual atmosphere does not always fall at a uniform rate with height. For example, there can be an inversion layer in which the temperature increases with height.

Effects of high altitude on humans [link]

Medicine recognizes that altitudes above 1,500 metres (4,900 ft) start to affect humans,[10] and extreme altitudes above 5,500–6,000 metres (18,000–20,000 ft) cannot be permanently tolerated by humans.[11] As altitude increases, atmospheric pressure decreases, which affects humans by reducing the partial pressure of oxygen.[12] The lack of oxygen above 2,400 metres (8,000 ft) can cause serious illnesses such as altitude sickness, High altitude pulmonary edema, and High altitude cerebral edema.[6] The higher the altitude, the more likely are serious effects.[6]

The human body can adapt to high altitude by breathing faster, having a higher heart rate, and adjusting its blood chemistry.[13][14] It can take days or weeks to adapt to high altitude. However, above 8,000 metres (26,000 ft), (in the "death zone"), the human body cannot adapt and will eventually die.[15]

There is a significantly lower overall mortality rate for permanent residents at higher altitudes.[16] However, people living at higher elevations have a statistically significant higher rate of suicide.[17] The cause for the increased suicide risk is unknown so far.[17]

For athletes, high altitude produces two contradictory effects on performance. For explosive events (sprints up to 400 metres, long jump, triple jump) the reduction in atmospheric pressure means there is less resistance from the atmosphere and the athlete's performance will generally be better at high altitude.[18] For endurance events (races of 5,000 metres or more) the predominant effect is the reduction in oxygen which generally reduces the athlete's performance at high altitude. Sports organisations acknowledge the effects of altitude on performance: the International Association of Athletic Federations (IAAF), for example, have ruled that performances achieved at an altitude greater than 1,000 metres (3,300 ft) will not be approved for record purposes.

Athletes also can take advantage of altitude acclimatization to increase their performance. The same changes that help the body cope with high altitude increase performance back at sea level.[19][20] These changes are the basis of altitude training which forms an integral part of the training of athletes in a number of endurance sports including track and field, distance running, triathlon, cycling and swimming.

References [link]

  1. ^ Air Navigation. Department of the Air Force. 1 December 1989. AFM 51-40. 
  2. ^ a b Radiotelephony Manual. UK Civil Aviation Authority. 1 January 1995. ISBN 0-86039-601-0. CAP413. 
  3. ^ "Layers of the Atmosphere". JetStream, the National Weather Service Online Weather School. National Weather Service. https://www.srh.noaa.gov/srh/jetstream/atmos/layers.htm. Retrieved 22 December 2005. 
  4. ^ Webster's New World Medical Dictionary. Wiley. 2008. ISBN 978-0-470-18928-3. https://www.medterms.com/script/main/art.asp?articlekey=8578. 
  5. ^ "An Altitude Tutorial". International Society for Mountain Medicine. https://www.ismmed.org/np_altitude_tutorial.htm. Retrieved 2011-06-22. 
  6. ^ a b c Cymerman, A; Rock, PB. Medical Problems in High Mountain Environments. A Handbook for Medical Officers. USARIEM-TN94-2. US Army Research Inst. of Environmental Medicine Thermal and Mountain Medicine Division Technical Report. https://archive.rubicon-foundation.org/7976. Retrieved 2009-03-05. 
  7. ^ "Atmospheric pressure". NOVA Online Everest. Public Broadcasting Service. https://www.pbs.org/wgbh/nova/everest/exposure/pressure.html. Retrieved 23 January 2009. 
  8. ^ Mark Zachary Jacobson (2005). Fundamentals of Atmospheric Modelling (2nd ed.). Cambridge University Press. ISBN 0-521-83970-X. 
  9. ^ C. Donald Ahrens (2006). Meteorology Today (8th ed.). Brooks/Cole Publishing. ISBN 0-495-01162-2. 
  10. ^ "Non-Physician Altitude Tutorial". International Society for Mountain Medicine. https://www.ismmed.org/np_altitude_tutorial.htm. Retrieved 22 December 2005. 
  11. ^ West, JB (2002). "Highest permanent human habitation". High Altitude Medical Biology 3 (4): 401–407. DOI:10.1089/15270290260512882. PMID 12631426. 
  12. ^ Peacock, Andrew J (17 October 1998). "Oxygen at high altitude". British Medical Journal 317 (7165): 1063–1066. DOI:10.1136/bmj.317.7165.1063. PMC 1114067. PMID 9774298. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1114067. 
  13. ^ Young, Andrew J. and Reeves, John T. (2002). "21". Human Adaptation to High Terrestrial Altitude. In: Medical Aspects of Harsh Environments. 2. Washington, DC. https://www.bordeninstitute.army.mil/published_volumes/harshEnv2/harshEnv2.html. Retrieved 2009-01-05. 
  14. ^ Muza, SR; Fulco, CS; Cymerman, A (2004). "Altitude Acclimatization Guide". US Army Research Inst. of Environmental Medicine Thermal and Mountain Medicine Division Technical Report (USARIEM–TN–04–05). https://archive.rubicon-foundation.org/7616. Retrieved 2009-03-05. 
  15. ^ "Everest:The Death Zone". Nova. PBS. 1998-02-24. https://www.pbs.org/wgbh/nova/transcripts/2506everest.html. 
  16. ^ West, John B. (January 2011). "Exciting Times in the Study of Permanent Residents of High Altitude". High Altitude Medicine & Biology 12 (1): 1. DOI:10.1089/ham.2011.12101. 
  17. ^ a b Brenner, Barry; Cheng, David; Clark, Sunday; Camargo, Carlos A., Jr (Spring 2011). "Positive Association between Altitude and Suicide in 2584 U.S. Counties". High Altitude Medicine & Biology 12 (1): 31–5. DOI:10.1089/ham.2010.1058. PMC 3114154. PMID 21214344. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3114154. 
  18. ^ Ward-Smith, AJ (1983). "The influence of aerodynamic and biomechanical factors on long jump performance". Journal of Biomechanics 16 (8): 655–658. DOI:10.1016/0021-9290(83)90116-1. PMID 6643537. 
  19. ^ Wehrlin JP, Zuest P, Hallén J, Marti B (June 2006). "Live high—train low for 24 days increases hemoglobin mass and red cell volume in elite endurance athletes". J. Appl. Physiol. 100 (6): 1938–45. DOI:10.1152/japplphysiol.01284.2005. PMID 16497842. https://jap.physiology.org/content/100/6/1938.long. Retrieved 2009-03-05. 
  20. ^ Gore CJ, Clark SA, Saunders PU (September 2007). "Nonhematological mechanisms of improved sea-level performance after hypoxic exposure". Med Sci Sports Exerc 39 (9): 1600–9. DOI:10.1249/mss.0b013e3180de49d3. PMID 17805094. https://meta.wkhealth.com/pt/pt-core/template-journal/lwwgateway/media/landingpage.htm?an=00005768-200709000-00023. Retrieved 2009-03-05. 

External links [link]


https://wn.com/Altitude

Altitude (film)

Altitude is a Canadian horror, television and "direct-to-video" film directed by Canadian comic book writer and artist Kaare Andrews.Anchor Bay Entertainment is set to distribute the film in North America, U.K., Australia, and New Zealand.

The trailer for Altitude premiered at the 2010 San Diego Comic Con.

Plot

In the prologue, the mother of Sara (Jessica Lowndes) is transporting a family of three (two parents and their son) in a small aircraft. The child is extremely nervous and starts hyperventilating. Wondering why he is so afraid, the parents suddenly see an out-of-control aircraft that crashes into them, and everyone plummets to the ground.

Years later, Sara, who has recently received her pilot's license, is planning to fly to a concert with her friends: her boyfriend Bruce Parker (Landon Liboiron), her cousin Cory (Ryan Donowho), her best friend Mel (Julianna Guill) and Mel's boyfriend Sal (Jake Weary). While in the air, Bruce's nerves draw ridicule from the others and Sara invites him to take the controls. They hit some turbulence and Bruce loses control, taking them into a steep climb.

List of G.I. Joe: A Real American Hero characters (A–C)

This is an alphabetical list of G.I. Joe: A Real American Hero characters whose code names start with the letters A-C.

Ace

Agent Faces

Agent Faces is the G.I. Joe Team's infiltrator. His real name is Michelino J. Paolino, and he was born in Parma, Ohio. Agent Faces was first released as an action figure in 2003, in a two-pack with Zartan.

His primary military specialty is intelligence. His secondary military specialty is language instructor. Agent Faces was born with an uncanny talent for mimicry. After doing a brutally accurate impression of his first sergeant during basic training, he was sent to a top-secret intelligence school. There, he learned the tricks of cloak and dagger, and the use of advanced makeup and disguise techniques.

Agent Faces appeared in the direct-to-video CGI animated movie G.I. Joe: Spy Troops, voiced by Ward Perry.

Agent Helix

Agent Helix is a covert operations officer with advanced martial arts training and expert marksmanship. Her favorite weapons are dual 10mm Auto pistols. An Olympic-class gymnast, her distinctive "Whirlwind attack" is an overpowering combination of kicks and firepower.

Flake

Flake or Flakes may refer to:

Food preparation

  • Fish flake, a platform for drying cod
  • Flake (fish), an Australian term for edible flesh of one of several species of shark
  • Flake (chocolate bar), a brand of chocolate bar manufactured by Cadbury
  • An individual popped kernel of corn is known as a "flake"
  • Science and technology

  • Nanoflake, a novel shape of semiconductor nanostructure
  • Lithic flake, a fragment of stone found in archaeology
  • Snowflake, a particle of snow
  • Flake tobacco, used in a smoking pipe
  • Flake (software), a software library for KDE
  • People

  • Floyd H. Flake (born 1945), A.M.E. minister, university administrator, former U.S. representative
  • Jeff Flake (born 1962), American politician
  • Christian "Flake" Lorenz, German musician and member of the band Rammstein
  • Music

  • Flake, the original name of the band Flake Music, the predecessor of The Shins
  • Flake, Australian psyche/prog rock band from Sydney, active in the late 1960s and early 1970s.
  • "Flake" (song), a song from the 2001 album Brushfire Fairytales by Jack Johnson
  • Naoki Yamamoto

    Naoki Yamamoto (山本 直樹 Yamamoto Naoki) is a male Japanese manga artist. In his early years, he also used pen names Tō Moriyama (森山 塔 Moriyama Tō) and Mori Tōyama (塔山 森 Tōyama Mori) for his earlier adult-oriented works. He was born in Matsumae District, Fukushima, Hokkaido

    Bibliography

    (Manga works as Tou Moriyama not listed)

  • (1984) Hora Konna ni Akaku Natteru
  • (1986) Makasensasei!
  • (1986) Happa 64 (はっぱ64?)
  • (1987) Kiwamete Kamoshida
  • (1988) Gomen ne B-Boy
  • (1989) Asatte Dance (あさってDance?) ; English translation: Dance till Tomorrow (1999)
  • (1990) Blue
  • (1992) Bokura wa minna ikite iru
  • (1992) Young & Fine
  • (1992) Flakes (フレイクス?)
  • (1993) Yume de aimashou
  • (1993) Kamoshida-kun Fight!
  • (1994) Kimi to itsu made mo
  • (1994) Koke Dish
  • (1994) Summer Memories
  • (1994) Arigatō (ありがとう?)
  • (1997) Fragments
  • (1999) Believers (ビリーバーズ?)
  • (2000) Terebi Bakari Miteruto Baka ni Naru (テレビばかり見てると馬鹿になる?, Watching Fuckin' TV All Time Makes a Fool)
  • (2002) Anju no Chi
  • (2005) Aozora
  • (2007) Red, won the Japanese government's Japan Media Arts Festival manga award for 2010
  • Flakes (film)

    Flakes is a 2007 American comedy film, directed by Michael Lehmann and starring Aaron Stanford and Zooey Deschanel. This film was written by Chris Poche & Karey Kirkpatrick.

    Plot

    Struggling musician Neal Downs (Aaron Stanford) works as manager of a little New Orleans eatery called Flakes, owned by an old hippie, Willie B (Christopher Lloyd), that serves nothing but cold cereal to its loyal clientele. When a rival franchise opens up across the street, Neal's girlfriend, the self-named Pussy Katz (Zooey Deschanel), applies for a job at the new establishment as a means of getting back at Neal for refusing to hire her at his place.

    Cast

  • Aaron Stanford as Neal Downs
  • Zooey Deschanel as Miss Pussy Katz
  • Christopher Lloyd as Willie
  • Ryan Donowho as Skinny Larry
  • Carol Sutton as Miss Lucille
  • Frank Wood as Bruce
  • B.J. Hopper as Old Tom
  • Jane Brody as Tourist Woman
  • Keir O'Donnell as Stuart
  • Brent Kirkpatrick as R Cafe Lead Singer
  • Izabella Miko as Strawberry
  • Walter Breaux as Homeless Man
  • Tony Molino as Police Officer
  • Podcasts:

    PLAYLIST TIME:
    ×