Reionization

In Big Bang cosmology, reionization is the process that reionized the matter in the universe after the "dark ages", and is the second of two major phase transitions of gas in the universe. As the majority of baryonic matter is in the form of hydrogen, reionization usually refers to the reionization of hydrogen gas. The primordial helium in the universe experienced the same phase changes, but at different points in the history of the universe, and is usually referred to as helium reionization.

Background

The first phase change of hydrogen in the universe was recombination, which occurred at a redshift z = 1089 (379,000 years after the Big Bang), due to the cooling of the universe to the point where the rate of recombination of electrons and protons to form neutral hydrogen was higher than the reionization rate. The universe was opaque before the recombination, due to the scattering of photons (of all wavelengths) off free electrons (and, to a significantly lesser extent, free protons), but it became increasingly transparent as more electrons and protons combined to form neutral hydrogen atoms. While the electrons of neutral hydrogen can absorb photons of some wavelengths by rising to an excited state, causing a universe full of neutral hydrogen to appear relatively opaque at those absorbed wavelengths, but transparent throughout most of the spectrum. The Dark Ages of the universe start at that point, because there were no light sources other than the gradually redshifting cosmic background radiation.

Podcasts:

PLAYLIST TIME:
×