Density matrix

A density matrix is a matrix that describes a quantum system in a mixed state, a statistical ensemble of several quantum states. This should be contrasted with a single state vector that describes a quantum system in a pure state. The density matrix is the quantum-mechanical analogue to a phase-space probability measure (probability distribution of position and momentum) in classical statistical mechanics.

Explicitly, suppose a quantum system may be found in state | \psi_1 \rangle with probability p1, or it may be found in state | \psi_2 \rangle with probability p2, or it may be found in state | \psi_3 \rangle with probability p3, and so on. The density operator for this system is

where \{|\psi_i\rangle\} need not be orthogonal and \sum_i p_i=1. By choosing an orthonormal basis \{|u_m\rangle\}, one may resolve the density operator into the density matrix, whose elements are

The density operator can also be defined in terms of the density matrix,

For an operator \hat A (which describes an observable A of the system), the expectation value \langle A \rangle is given by

In words, the expectation value of A for the mixed state is the sum of the expectation values of A for each of the pure states |\psi_i\rangle weighted by the probabilities pi and can be computed as the trace of the product of the density matrix with the matrix representation of A in the same basis.

Podcasts:

PLAYLIST TIME:
×