Defensins are small cysteine-rich cationic proteins found in both vertebrates and invertebrates. They have also been reported in plants. They are, and function as, host defense peptides. They are active against bacteria, fungi and many enveloped and nonenveloped viruses. They consist of 18-45 amino acids including six (in vertebrates) to eight conserved cysteine residues. Cells of the immune system contain these peptides to assist in killing phagocytosed bacteria, for example in neutrophil granulocytes and almost all epithelial cells. Most defensins function by binding to the microbial cell membrane, and, once embedded, forming pore-like membrane defects that allow efflux of essential ions and nutrients.
The name 'defensin' was coined in the early 1990s, though the proteins had been studied as 'Cationic Antimicrobial Proteins'. The underlying genes responsible for defensin production are highly polymorphic. Some aspects are conserved, however; the hallmarks of a β-defensin are its small size, high density of cationic charge, and six-cysteine-residue motif. In general, they are encoded by two-exon genes, wherein the first exon encodes for a hydrophobic leader sequence and the second for a peptide containing the cysteine motif. All defensins have disulfide linkages. But the role of these highly conserved cysteines is not known. Many reports reveal that disulfide bonds are not necessary for antimicrobial activity of arthropod defensins. Antibacterial activity of linear peptides spanning the carboxy-terminal β-sheet domain of arthropod defensins Similarly, mammalian defensins also do not require disulfide bonds to exhibit antimicrobial activity. The disulfide linkages have been suggested to be essential for activities related to innate immunity in mammals.