Cyclin E is a member of the cyclin family.
Cyclin E binds to G1 phase Cdk2, which is required for the transition from G1 to S phase of the cell cycle that determines cell division. The Cyclin E/CDK2 complex phosphorylates p27Kip1 (an inhibitor of Cyclin D), tagging it for degradation, thus promoting expression of Cyclin A, allowing progression to S phase.
Like all cyclin family members, cyclin E forms a complex with cyclin-dependent kinase (CDK2). Cyclin E/CDK2 regulates multiple cellular processes by phosphorylating numerous downstream proteins.
Cyclin E/CDK2 plays a critical role in the G1 phase and in the G1-S phase transition. Cyclin E/CDK2 phosphorylates retinoblastoma protein (Rb) to promote G1 progression. Hyper-phosphorylated Rb will no longer interact with E2F transcriptional factor, thus release it to promote expression of genes that drive cells to S phase through G1 phase. Cyclin E/CDK2 also phosphorylates p27 and p21 during G1 and S phases, respectively. Smad3, a key mediator of TGF-β pathway which inhibits cell cycle progression, can be phosphorylated by cyclin E/CDK2. The phosphorylation of Smad3 by cyclin E/CDK2 inhibits its transcriptional activity and ultimately facilitates cell cycle progression. CBP/p300 and E2F-5 are also substrates of cyclin E/CDK2. Phosphorylation of these two proteins stimulates the transcriptional events during cell cycle progression. Cyclin E/CDK2 can phosphorylate p220(NPAT) to promote histone gene transcription during cell cycle progression.
Cyclin E2 is a protein that in humans is encoded by the CCNE2 gene. It is a G1 cyclin that binds Cdk2 and is inhibited by p27(Kip1) and p21(Cip1). It plays a role in the G1/S portion of the cell cycle and also has putative interactions with proteins CDKN1A, CDKN1B, and CDK3. Aberrant expression can lead to cancer.
G1/S-specific cyclin-E1 is a protein that in humans is encoded by the CCNE1 gene.
The protein encoded by this gene belongs to the highly conserved cyclin family, whose members are characterized by a dramatic periodicity in protein abundance through the cell cycle. Cyclins function as regulators of CDK kinases. Different cyclins exhibit distinct expression and degradation patterns which contribute to the temporal coordination of each mitotic event. This cyclin forms a complex with and functions as a regulatory subunit of CDK2, whose activity is required for cell cycle G1/S transition. This protein accumulates at the G1-S phase boundary and is degraded as cells progress through S phase. Overexpression of this gene has been observed in many tumors, which results in chromosome instability, and thus may contribute to tumorigenesis. This protein was found to associate with, and be involved in, the phosphorylation of NPAT protein (nuclear protein mapped to the ATM locus), which participates in cell-cycle regulated histone gene expression and plays a critical role in promoting cell-cycle progression in the absence of pRB. Two alternatively spliced transcript variants of this gene, which encode distinct isoforms, have been described. Two additional splice variants were reported but detailed nucleotide sequence information is not yet available.