Conway group
In the area of modern algebra known as group theory, the Conway groups are the three sporadic simple groups Co1, Co2 and Co3 along with the related finite group Co0 introduced by (Conway 1968, 1969).
The largest of the Conway groups, Co0, is the group of automorphisms of the Leech lattice Λ with respect to addition and inner product. It has order
but it is not a simple group. The simple group Co1 of order
is defined as the quotient of Co0 by its center, which consists of the scalar matrices ±1.
The inner product on the Leech lattice is defined as 1/8 the sum of the products of respective co-ordinates of the two multiplicand vectors; it is an integer. The square norm of a vector is its inner product with itself. It is common to speak of the type of a Leech lattice vector: half the square norm. This lattice has no vectors of type 1. The groups Co2 (of order 42,305,421,312,000) and Co3 (of order 495,766,656,000) consist of the automorphisms of Λ fixing a lattice vector of type 2 and a vector of type 3 respectively. As the scalar −1 fixes no non-zero vector, these two groups are isomorphic to subgroups of Co1.