Complex manifold
In differential geometry, a complex manifold is a manifold with an atlas of charts to the open unit disk in Cn, such that the transition maps are holomorphic.
The term complex manifold is variously used to mean a complex manifold in the sense above (which can be specified as an integrable complex manifold), and an almost complex manifold.
Implications of complex structure
Since holomorphic functions are much more rigid than smooth functions, the theories of smooth and complex manifolds have very different flavors: compact complex manifolds are much closer to algebraic varieties than to differentiable manifolds.
For example, the Whitney embedding theorem tells us that every smooth n-dimensional manifold can be embedded as a smooth submanifold of R2n, whereas it is "rare" for a complex manifold to have a holomorphic embedding into Cn. Consider for example any compact connected complex manifold M: any holomorphic function on it is locally constant by Liouville's theorem. Now if we had a holomorphic embedding of M into Cn, then the coordinate functions of Cn would restrict to nonconstant holomorphic functions on M, contradicting compactness, except in the case that M is just a point. Complex manifolds that can be embedded in Cn are called Stein manifolds and form a very special class of manifolds including, for example, smooth complex affine algebraic varieties.