Clay minerals are hydrous aluminium phyllosilicates, sometimes with variable amounts of iron, magnesium, alkali metals, alkaline earths, and other cations found on or near some planetary surfaces.
Clay minerals form in the presence of water and have been important to life, and many theories of abiogenesis involve them. They have been useful to humans since ancient times in agriculture and manufacturing.
Clays form flat hexagonal sheets similar to the micas. Clay minerals are common weathering products (including weathering of feldspar) and low-temperature hydrothermal alteration products. Clay minerals are very common in fine-grained sedimentary rocks such as shale, mudstone, and siltstone and in fine-grained metamorphic slate and phyllite.
Clay minerals are usually (but not necessarily) ultrafine-grained (normally considered to be less than 2 micrometres in size on standard particle size classifications) and so may require special analytical techniques for their identification and study. These include x-ray diffraction, electron diffraction methods, various spectroscopic methods such as Mössbauer spectroscopy, infrared spectroscopy, Raman spectroscopy, and SEM-EDS or automated mineralogy processes. These methods can be augmented by polarized light microscopy, a traditional technique establishing fundamental occurrences or petrologic relationships.
Clay is a fine-grained natural rock or soil material that combines one or more clay minerals with traces of metal oxides and organic matter. Clays are plastic due to their water content and become hard, brittle and non–plastic upon drying or firing. Geologic clay deposits are mostly composed of phyllosilicate minerals containing variable amounts of water trapped in the mineral structure. Depending on the content of the soil, clay can appear in various colours, from white to dull gray or brown to a deep orange-red.
Clays are distinguished from other fine-grained soils by differences in size and mineralogy. Silts, which are fine-grained soils that do not include clay minerals, tend to have larger particle sizes than clays. There is, however, some overlap in particle size and other physical properties, and many naturally occurring deposits include both silts and clay. The distinction between silt and clay varies by discipline. Geologists and soil scientists usually consider the separation to occur at a particle size of 2 µm (clays being finer than silts), sedimentologists often use 4–5 μm, and colloid chemists use 1 μm.Geotechnical engineers distinguish between silts and clays based on the plasticity properties of the soil, as measured by the soils' Atterberg limits. ISO 14688 grades clay particles as being smaller than 2 μm and silt particles as being larger.