Chronaxie
Chronaxie is the minimum time required for an electric current double the strength of the rheobase to stimulate a muscle or a neuron. Rheobase is the lowest intensity with indefinite pulse duration which just stimulated muscles or nerves. Chronaxie is dependent on the density of voltage-gated sodium channels in the cell, which affect that cell’s excitability. Chronaxie varies across different types of tissue: fast-twitch muscles have a lower chronaxie, slow-twitch muscles have a higher one. Chronaxie is the tissue-excitability parameter that
permits choice of the optimum stimulus pulse duration for stimulation of any excitable tissue. Chronaxie (c) is the Lapicque descriptor of the stimulus pulse duration for a current
of twice rheobasic (b) strength, which is the threshold current
for an infinitely long-duration stimulus pulse. Lapicque showed
that these two quantities (c,b) define the strength-duration curve
for current: I = b(1+c/d), where d is the pulse duration.
However, there are two other electrical parameters used to
describe a stimulus: energy and charge. The minimum energy
occurs with a pulse duration equal to chronaxie. Minimum
charge (bc) occurs with an infinitely short-duration pulse.
Choice of a pulse duration equal to 10c requires a current of
only 10% above rheobase (b). Choice of a pulse duration of
0.1c requires a charge of 10% above the minimum charge (bc).