Charm or charms, or The Charm, originally from Latin carmen ("song"), may refer to:
Charmé is a commune in the Charente department in southwestern France.
Charm++ is a parallel object-oriented programming language based on C++ and developed in the Parallel Programming Laboratory at the University of Illinois. Charm++ is designed with the goal of enhancing programmer productivity by providing a high-level abstraction of a parallel program while at the same time delivering good performance on a wide variety of underlying hardware platforms. Programs written in Charm++ are decomposed into a number of cooperating message-driven objects called chares. When a programmer invokes a method on an object, the Charm++ runtime system sends a message to the invoked object, which may reside on the local processor or on a remote processor in a parallel computation. This message triggers the execution of code within the chare to handle the message asynchronously.
Chares may be organized into indexed collections called chare arrays and messages may be sent to individual chares within a chare array or to the entire chare array simultaneously.
The chares in a program are mapped to physical processors by an adaptive runtime system. The mapping of chares to processors is transparent to the programmer, and this transparency permits the runtime system to dynamically change the assignment of chares to processors during program execution to support capabilities such as measurement-based load balancing, fault tolerance, automatic checkpointing, and the ability to shrink and expand the set of processors used by a parallel program.
In mathematical finance, the Greeks are the quantities representing the sensitivity of the price of derivatives such as options to a change in underlying parameters on which the value of an instrument or portfolio of financial instruments is dependent. The name is used because the most common of these sensitivities are denoted by Greek letters (as are some other finance measures). Collectively these have also been called the risk sensitivities,risk measures or hedge parameters.
The Greeks are vital tools in risk management. Each Greek measures the sensitivity of the value of a portfolio to a small change in a given underlying parameter, so that component risks may be treated in isolation, and the portfolio rebalanced accordingly to achieve a desired exposure; see for example delta hedging.
The Greeks in the Black–Scholes model are relatively easy to calculate, a desirable property of financial models, and are very useful for derivatives traders, especially those who seek to hedge their portfolios from adverse changes in market conditions. For this reason, those Greeks which are particularly useful for hedging—such as delta, theta, and vega—are well-defined for measuring changes in Price, Time and Volatility. Although rho is a primary input into the Black–Scholes model, the overall impact on the value of an option corresponding to changes in the risk-free interest rate is generally insignificant and therefore higher-order derivatives involving the risk-free interest rate are not common.
The charm quark or c quark (from its symbol, c) is the third most massive of all quarks, a type of elementary particle. Charm quarks are found in hadrons, which are subatomic particles made of quarks. Example of hadrons containing charm quarks include the J/ψ meson (J/ψ), D mesons (D), charmed Sigma baryons (Σ
c), and other charmed particles.
It, along with the strange quark is part of the second generation of matter, and has an electric charge of +2⁄3 e and a bare mass of 7000129000000000000♠1.29+0.05
−0.11 GeV/c2. Like all quarks, the charm quark is an elementary fermion with spin-1⁄2, and experiences all four fundamental interactions: gravitation, electromagnetism, weak interactions, and strong interactions. The antiparticle of the charm quark is the charm antiquark (sometimes called anticharm quark or simply anticharm), which differs from it only in that some of its properties have equal magnitude but opposite sign.
The existence of a fourth quark had been speculated by a number of authors around 1964 (for instance by James Bjorken and Sheldon Glashow), but its prediction is usually credited to Sheldon Glashow, John Iliopoulos and Luciano Maiani in 1970 (see GIM mechanism). The first charmed particle (a particle containing a charm quark) to be discovered was the J/ψ meson. It was discovered by a team at the Stanford Linear Accelerator Center (SLAC), led by Burton Richter, and one at the Brookhaven National Laboratory (BNL), led by Samuel Ting.
A spell, charm or hex is a set of words, spoken or unspoken, which are considered by its user to invoke some magical effect. Historical attestations exist for the use of some variety of incantations in many cultures around the world. Binding a person with a spell by the use of spoken word formulas is known as an incantation, and involves the use of evocation.
Surviving written records of whole magic spells were largely obliterated in many cultures by the success of the major monotheistic religions, Islam, Judaism and Christianity, which label some magic activity as immoral or associated with evil. Spells would generally be distinguished from magic symbols, words, patterns, recipes, practices and other forms of magic that were not directly exercised by a collection of words. However, some spells were combinations or repetitions of words that were considered to have magic power, but which were not in sentences or verse.
Surviving examples from northern Europe include For a Swarm of Bees, the Nine Herbs Charm and the Merseburg Incantations.