CAV-1 and similar may refer to:
Caveolin-1 is a protein that in humans is encoded by the CAV1 gene.
The scaffolding protein encoded by this gene is the main component of the caveolae plasma membranes found in most cell types. The protein links integrin subunits to the tyrosine kinase FYN, an initiating step in coupling integrins to the Ras-ERK pathway and promoting cell cycle progression. The gene is a tumor suppressor gene candidate and a negative regulator of the Ras-p42/44 MAP kinase cascade. CAV1 and CAV2 are located next to each other on chromosome 7 and express colocalizing proteins that form a stable hetero-oligomeric complex. By using alternative initiation codons in the same reading frame, two isoforms (alpha and beta) are encoded by a single transcript from this gene.
Caveolin 1 has been shown to interact with heterotrimeric G proteins, Src tyrosine kinases (Src, Lyn) and H-Ras,cholesterol,TGF beta receptor 1,Endothelial NOS,Androgen receptor,Amyloid precursor protein,Gap junction protein, alpha 1,Nitric oxide synthase 2A,Epidermal growth factor receptor,Endothelin receptor type B,PDGFRB,PDGFRA,PTGS2,TRAF2,Estrogen receptor alpha,Caveolin 2,PLD2,Bruton's tyrosine kinase and SCP2. All these interactions are through a caveolin-scaffolding domain (CSD) within caveolin-1 molecule. Molecules that interact with caveolin-1 contain caveolin-binding motifs (CBM).
Calcium channel, voltage-dependent, L type, alpha 1D subunit (also known as Cav1.3) is a protein that in humans is encoded by the CACNA1D gene. Cav1.3 channels belong to the Cav1 family, which form L-type calcium currents and are sensitive to selective inhibition by dihydropyridines (DHP).
Voltage-dependent calcium channels (VDCC) are selectively permeable to calcium ions, mediating the movement of these ions in and out of excitable cells. At resting potential, these channels are closed, but when the membrane potential is depolarised these channels open. The influx of calcium ions into the cell can initiate a myriad of calcium-dependent processes including muscle contraction, gene expression, and secretion. Calcium-dependent processes can be halted by lowering intracellular calcium levels, which, for example, can be accomplished by calcium pumps.
Voltage-dependent calcium channels are multi-proteins composed of α1, β, α2δ and γ subunits. The major subunit is α1, which forms the selectivity pore, voltage-sensor and gating apparatus of VDCCs. In Cav1.3 channels, the α1 subunit is α1D. This subunit differentiates Cav1.3 channels from other members of the Cav1 family, such as the predominant and better-studied Cav1.2, which has an α1C subunit. The significance of the α1 subunit also means that it is the primary target for calcium-channel blockers such as dihydropyridines. The remaining β, α2δ and γ subunits have auxiliary functions.