The Casein kinase 2 (EC 2.7.11.1) is a serine/threonine-selective protein kinase that is a tetramer of two alpha subunits and two beta subunits. The alpha subunits have the catalytic kinase domain. Casein kinase 2 has been implicated in cell cycle control, DNA repair, regulation of the circadian rhythm and other cellular processes.
Casein kinase 2 activity has been reported to be activated following Wnt signaling pathway activation. A Pertussis toxin-sensitive G protein and Dishevelled appear to be an intermediary between Wnt-mediated activation of the Frizzled receptor and activation of casein kinase 2.
Mice that lack casein kinase 2 alpha prime have a defect in the morphology of developing sperm.
The Casein kinase 1 family (EC 2.7.11.1) of protein kinases are serine/threonine-selective enzymes that function as regulators of signal transduction pathways in most eukaryotic cell types. CK1 isoforms are involved in Wnt signaling, circadian rhythms, nucleo-cytoplasmic shuttling of transcription factors, DNA repair, and DNA transcription.
By the early 1950s it was known from metabolic labeling studies using radioactive phosphate that phosphate groups attached to phosphoproteins inside cells can sometimes undergo rapid exchange of new phosphate for old. In order to perform experiments that would allow isolation and characterization of the enzymes involved in attaching and removing phosphate from proteins, there was a need for convenient substrates for protein kinases and protein phosphatases. Casein has been used as a substrate since the earliest days of research on protein phosphorylation. By the late 1960s, cyclic AMP-dependent protein kinase had been purified, and most attention was centered on kinases and phosphatases that could regulate the activity of important enzymes. Casein kinase activity associated with the endoplasmic reticulum of mammary glands was first characterized in 1974, and its activity was shown to not depend on cyclic AMP.