N-cadherin, also known as Cadherin-2 (CDH2) or neural cadherin (NCAD) is a protein that in humans is encoded by the CDH2 gene. CDH2 has also been designated as CD325 (cluster of differentiation 325). N-cadherin is a transmembrane protein expressed in multiple tissues and functions to mediate cell-cell adhesion. In cardiac muscle, N-cadherin is an integral component in adherens junctions residing at intercalated discs, which function to mechanically and electrically couple adjacent cardiomyocytes. While mutations in CDH2 have not thus far been associated with human disease, alterations in expression and integrity of N-cadherin protein has been observed in various forms of disease, including human dilated cardiomyopathy.
N-cadherin is a protein with molecular weight of 99.7 kDa, and 906 amino acids in length. N-cadherin a classical cadherin from the cadherin superfamily, composed of five extracellular cadherin repeats, a transmembrane region and a highly conserved cytoplasmic tail. N-cadherin, as well as other cadherins, interact with N-cadherin on an adjacent cell in an anti-parallel conformation, thus creating a linear, adhesive "zipper" between cells.
Cadmium hydride (systematically named cadmium dihydride) is an inorganic compound with the chemical formula (CdH
2)
n (also written as ([CdH
2])
n or CdH
2). It is a solid, known only as a thermally unstable, insoluble white powder.
The systematic name cadmium dihydride, a valid IUPAC name, is constructed according to the compositional nomenclature. Cadmium dihydride is also used to refer to the related molecular compound dihydridocadmium and its oligomers. Care should be taken to avoid confusing the two compounds.
Cadmium hydride is also used as a compositional IUPAC name for the compound with the chemical formula CdH.
In 1950 a research group led by Glenn D. Barbaras, synthesized cadmium hydride for the first time. This reaction sequence consisted of demethylation of dimethylcadmium in diethyl ether at −78 °C, to cadmium hydride.
Solid cadmium hydride, on the basis of its infrared spectrum, is believed to contain hydrogen-bridge bonds. Other lower metal hydrides polymerize in a similar fashion. Unless cooled below −20 °C (−4 °F), cadmium hydride rapidly decomposes to produce cadmium and hydrogen:
The Human Genome Organisation (HUGO) is an organization involved in the Human Genome Project, a project about mapping the human genome. HUGO was established in 1989 as an international organization, primarily to foster collaboration between genome scientists around the world. The HUGO Gene Nomenclature Committee (HGNC), sometimes referred to as "HUGO", is one of HUGO's most active committees and aims to assign a unique gene name and symbol to each human gene.
HUGO was established in late April 1988 at the first meeting dedicated to genome mapping at Cold Spring Harbor. The idea of starting the organization stemmed from a South African biologist by the name of Sydney Brenner, who is known for his significant contributions to work on the genetic code and other areas of molecular biology, as well as winning the Nobel prize in Physiology of Medicine in 2002. A Founding Council was elected at the meeting that total 42 scientists from 17 different countries. HUGO is grounded in Geneva Switzerland, and later went on to elect an additional 178 members, bringing the total up to 220.