The borate minerals are minerals which contain a borate anion group. The borate (BO3) units may be polymerised similar to the SiO4 unit of the silicate mineral class. This results in B2O5, B3O6, B2O4 anions as well as more complex structures which include hydroxide or halogen anions. The [B(O,OH)4]− anion exists too.
Many borate minerals, such as borax, colemanite, and ulexite, are salts: soft, readily soluble, and found in evaporite contexts. However, some, such as boracite, are hard and resistant to weathering, more similar to the silicates.
There are over 100 different borate minerals. Borate minerals include:
IMA-CNMNC proposes a new hierarchical scheme (Mills et al., 2009). This list uses it to modify the Classification of Nickel–Strunz (mindat.org, 10 ed, pending publication).
Borates are the name for a large number of boron-containing oxyanions. The term "borates" may also refer to tetrahedral boron anions, or more loosely to chemical compounds which contain borate anions of either description. Larger borates are composed of trigonal planar BO3 or tetrahedral BO4 structural units, joined together via shared oxygen atoms and may be cyclic or linear in structure. Boron most often occurs in nature as borates, such as borate minerals and borosilicates.
The simplest borate anion, the orthoborate ion, BO33− is known in the solid state, for example in Ca3(BO3)2. In this it adopts a near trigonal planar structure. It is a structural analogue of the carbonate anion CO32−, with which it is isoelectronic. Simple bonding theories point to the trigonal planar structure. In terms of valence bond theory the bonds are formed by using sp2hybrid orbitals on boron. Some compounds termed orthoborates do not necessarily contain the trigonal planar ion, for example gadolinium orthoborate, GdBO3 contains the polyborate (B3O9)9− ion, whereas the high temperature form contains planar BO33−.