Bismuth(III) oxide

Bismuth(III) oxide is perhaps the most industrially important compound of bismuth. It is also a common starting point for bismuth chemistry. It is found naturally as the mineral bismite (monoclinic) and sphaerobismoite (tetragonal, much more rare), but it is usually obtained as a by-product of the smelting of copper and lead ores. Bismuth trioxide is commonly used to produce the "Dragon's eggs" effect in fireworks, as a replacement of red lead.

Structure

The structures adopted by Bi2O3 differ substantially from those of arsenic(III) oxide, As2O3, and antimony(III) oxide, Sb2O3.

Bismuth oxide, Bi2O3 has five crystallographic polymorphs. The room temperature phase, α-Bi2O3 has a monoclinic crystal structure. There are three high temperature phases, a tetragonal β-phase, a body-centred cubic γ-phase, a cubic δ-Bi2O3 phase and an ε- phase. The room temperature α-phase has a complex structure with layers of oxygen atoms with layers of bismuth atoms between them. The bismuth atoms are in two different environments which can be described as distorted 6 and 5 coordinate respectively.

Podcasts:

PLAYLIST TIME:

Latest News for: bismuth oxide

Edit

China’s new silicon-free chip beats Intel with 40% more speed and 10% less energy

Interesting Engineering 11 Mar 2025
The PKU team overcame these obstacles by engineering their own bismuth-based materials, specifically Bi2O2Se and Bi2SeO5, which serve as the semiconductor and high-dielectric oxide material, respectively.
  • 1
×