The basal or basic electrical rhythm (BER) or electrical control activity (ECA) determines the frequency of the contractions in the gastrointestinal (GI) tract.
Smooth muscle within the GI tract causes the involuntary peristaltic motion that moves consumed food down the esophagus and towards the rectum. The smooth muscle throughout most of the GI tract is divided into two layers: an outer longitudinal layer and an inner circular layer. Both layers of muscle are located within the muscularis externa. The stomach has a third layer: an innermost oblique layer.
The physical contractions of the smooth muscle cells can be caused by action potentials in efferent motor neurons of the enteric nervous system, or by receptor mediated calcium influx. The inner circular layer is innervated by both excitatory and inhibitory motor neurons, while the outer longitudinal layer is innervated by mainly excitatory neurons. These action potentials cause the smooth muscle cells to contract or relax, depending on the particular stimulation the cells receive. Longitudinal muscle fibers depend on calcium influx into the cell for excitation-contraction coupling, while circular muscle fibers rely on intracellular calcium release. Contraction of the smooth muscle can occur when the BER reaches its plateau (an absolute value less than -45mV) while a simultaneous stimulatory action potential occurs. A contraction will not occur unless an action potential occurs. Generally, BER waves stimulate action potentials and action potentials stimulate contractions.