Barnard 68
Barnard 68.jpg
Observation data (Epoch J2000.0 [1])
Type Molecular cloud[1] / Absorption nebula[1] / Bok globule
Right ascension 17h 22m 38.2s [1]
Declination -23° 49′ 34″ [1]
Distance (ly) 500 ly [2]
Constellation Ophiuchus [2]
Physical characteristics
Radius 0.25 ly [2]
Other designations Barnard 68 , LDN 57
See also: Dark nebula, Lists of nebulae

Barnard 68 is a molecular cloud, dark absorption nebula or Bok globule, towards the southern constellation Ophiuchus and well within our own galaxy at a distance of about 500 light-years, so close that not a single star can be seen between it and the Sun. American astronomer Edward Emerson Barnard added this nebula to his catalog of dark nebulae in 1919. He published his catalog in 1927, at which stage it included some 350 objects. Because of its opacity, its interior is extremely cold, its temperature being about 16 K (−257 °C). Its mass is about twice that of the Sun and it measures about half a light-year across.[2]

Characteristics [link]

Despite being opaque at visible-light wavelengths, use of the Very Large Telescope at Cerro Paranal has revealed the presence of about 3,700 blocked background Milky Way stars, some 1,000 of which are visible at infrared wavelengths.[3] Careful measurements of the degree of obscuration resulted in a finely sampled and accurate mapping of the dust distribution inside the cloud. Having a dark cloud in the solar neighborhood greatly facilitates observation and measurement. If not disrupted by external forces, the stability of dust clouds is a fine balance between outward pressure caused by the heat or pressure of the cloud's contents, and inward gravitational forces generated by the same particles (see Jeans instability and Bonnor-Ebert mass). This causes the cloud to wobble or oscillate in a manner not unlike that of a large soap bubble or a water-filled balloon which is jiggled. In order for the cloud to become a star, gravity must gain the upper hand long enough to cause the collapse of the cloud and reach a temperature and density where fusion can be sustained. When this happens, the much smaller size of the star's envelope signals a new balance between greatly increased gravity and radiation pressure. [4]

The cloud's mass is about twice that of the Sun, and it measures about half a light-year across. [2] Barnard 68's well-defined edges and other features show that it is on the verge of gravitational collapse within the next 100,000 years or so, and is on its way to becoming a star.

References [link]

External links [link]


https://wn.com/Barnard_68

Podcasts:

PLAYLIST TIME:
×