Angiopoietin is part of a family of vascular growth factors that play a role in embryonic and postnatal angiogenesis. Angiopoietin signaling most directly corresponds with angiogenesis, the process by which new arteries and veins form from preexisting blood vessels. Angiogenesis proceeds through sprouting, endothelial cell migration, proliferation, and vessel destabilization and stabilization. They are responsible for assembling and disassembling the endothelial lining of blood vessels. Angiopoietin cytokines are involved with controlling microvascular permeability, vasodilation, and vasoconstriction by signaling smooth muscle cells surrounding vessels. There are now four identified angiopoietins: ANGPT1, ANGPT2, ANGPT4. In addition, there are a number of proteins that are closely related to angiopoietins (ANGPTL1, ANGPTL2, ANGPTL3, ANGPTL4, ANGPTL5, ANGPTL6, ANGPTL7).
Angiopoietin-1 is critical for vessel maturation, adhesion, migration, and survival. Angiopoietin-2, on the other hand, promotes cell death and disrupts vascularization. Yet, when it is in conjunction with vascular endothelial growth factors, or VEGF, it can promote neo-vascularization.
Angiopoietin-2 is a protein that in humans is encoded by the ANGPT2 gene.
Naturally occurring antagonist for both ANGPT1 and TIE2; expressed only at the sites of vascular remodeling; similar to angiopoietin-1
ANGPT2 has been shown to interact with TEK tyrosine kinase.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.
Angiopoietin 1 is a type of angiopoietin and is encoded by the gene ANGPT1.
Angiopoietins are proteins with important roles in vascular development and angiogenesis. All angiopoietins bind with similar affinity to an endothelial cell-specific tyrosine-protein kinase receptor. The protein encoded by this gene is a secreted glycoprotein that activates the receptor by inducing its tyrosine phosphorylation. It plays a critical role in mediating reciprocal interactions between the endothelium and surrounding matrix and mesenchyme. The protein also contributes to blood vessel maturation and stability, and may be involved in early development of the heart.
Angiopoietin 1 has been shown to interact with TEK tyrosine kinase.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.