In mathematics, an algebraic cycle on an algebraic varietyV is, roughly speaking, a homology class on V that is represented by a linear combination of subvarieties of V. Therefore, the algebraic cycles on V are the part of the algebraic topology of V that is directly accessible in algebraic geometry. With the formulation of some fundamental conjectures in the 1950s and 1960s, the study of algebraic cycles became one of the main objectives of the algebraic geometry of general varieties.