A kinase (PRKA) anchor protein (yotiao) 9
Identifiers
Symbols AKAP9; AKAP-9; AKAP350; AKAP450; CG-NAP; HYPERION; MU-RMS-40.16A; PPP1R45; PRKA9; YOTIAO
External IDs OMIM604001 MGI2178217 HomoloGene17517 GeneCards: AKAP9 Gene
RNA expression pattern
PBB GE AKAP9 210962 s at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez 10142 100986
Ensembl ENSG00000127914 ENSMUSG00000040407
UniProt Q99996 Q70FJ1
RefSeq (mRNA) NM_005751.4 NM_194462.2
RefSeq (protein) NP_005742.4 NP_919444.2
Location (UCSC) Chr 7:
91.57 – 91.74 Mb
Chr 5:
3.93 – 4.08 Mb
PubMed search [1] [2]

A-kinase anchor protein 9 is an enzyme that in humans is encoded by the AKAP9 gene.[1][2][3] The A-kinase anchor proteins (AKAPs) are a group of structurally diverse proteins which have the common function of binding to the regulatory subunit of protein kinase A (PKA) and confining the holoenzyme to discrete locations within the cell. This gene encodes a member of the AKAP family. Alternate splicing of this gene results in many isoforms that localize to the centrosome and the Golgi apparatus, and interact with numerous signaling proteins from multiple signal transduction pathways. These signaling proteins include type II protein kinase A, serine/threonine kinase protein kinase N, protein phosphatase 1, protein phosphatase 2a, protein kinase C-epsilon and phosphodiesterase 4D3.[3]

Contents

Model organisms [link]

Model organisms have been used in the study of AKAP9 function. A conditional knockout mouse line, called Akap9tm1a(KOMP)Wtsi[14][15] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[16][17][18]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[13][19] Twenty six tests were carried out on mutant mice and eight significant abnormalities were observed.[13] Fewer than expected homozygous mutant mice survived until weaning. The remaining tests were carried out on both homozygous and heterozygous mutant adult mice. Animals of both sex displayed decreased body fat and body weight, hematopoietic abnormalities and an atypical plasma chemistry panel. Female homozygotes also displayed abnormal tooth morphology while males heterozygous animals displayed an abnormal pelvic girdle bone morphology.[13]

Interactions [link]

AKAP9 has been shown to interact with Calmodulin 1,[20] FNBP1,[21] CALM2,[20] Protein kinase N1,[22] TRIP10,[21] KvLQT1[23] and PRKAR2A.[24][22]

References [link]

  1. ^ Lin JW, Wyszynski M, Madhavan R, Sealock R, Kim JU, Sheng M (Apr 1998). "Yotiao, a novel protein of neuromuscular junction and brain that interacts with specific splice variants of NMDA receptor subunit NR1". J Neurosci 18 (6): 2017–27. PMID 9482789. 
  2. ^ Westphal RS, Tavalin SJ, Lin JW, Alto NM, Fraser ID, Langeberg LK, Sheng M, Scott JD (Jul 1999). "Regulation of NMDA receptors by an associated phosphatase-kinase signaling complex". Science 285 (5424): 93–6. DOI:10.1126/science.285.5424.93. PMID 10390370. 
  3. ^ a b "Entrez Gene: AKAP9 A kinase (PRKA) anchor protein (yotiao) 9". https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=10142. 
  4. ^ "Body weight data for Akap9". Wellcome Trust Sanger Institute. https://www.sanger.ac.uk/mouseportal/phenotyping/MBFR/weight-curves/. 
  5. ^ "Indirect calorimetry data for Akap9". Wellcome Trust Sanger Institute. https://www.sanger.ac.uk/mouseportal/phenotyping/MBFR/indirect-calorimetry/. 
  6. ^ "Glucose tolerance test data for Akap9". Wellcome Trust Sanger Institute. https://www.sanger.ac.uk/mouseportal/phenotyping/MBFR/glucose-tolerance-ip/. 
  7. ^ "DEXA data for Akap9". Wellcome Trust Sanger Institute. https://www.sanger.ac.uk/mouseportal/phenotyping/MBFR/body-composition-dexa/. 
  8. ^ "Radiography data for Akap9". Wellcome Trust Sanger Institute. https://www.sanger.ac.uk/mouseportal/phenotyping/MBFR/x-ray-imaging/. 
  9. ^ "Clinical chemistry data for Akap9". Wellcome Trust Sanger Institute. https://www.sanger.ac.uk/mouseportal/phenotyping/MBFR/plasma-chemistry/. 
  10. ^ "Salmonella infection data for Akap9". Wellcome Trust Sanger Institute. https://www.sanger.ac.uk/mouseportal/phenotyping/MBFR/salmonella-challenge/. 
  11. ^ "Citrobacter infection data for Akap9". Wellcome Trust Sanger Institute. https://www.sanger.ac.uk/mouseportal/phenotyping/MBFR/citrobacter-challenge/. 
  12. ^ Mouse Resources Portal, Wellcome Trust Sanger Institute.
  13. ^ a b c d Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica 88: 925–7. DOI:10.1111/j.1755-3768.2010.4142.x. 
  14. ^ "International Knockout Mouse Consortium". https://www.knockoutmouse.org/martsearch/search?query=Akap9. 
  15. ^ "Mouse Genome Informatics". https://www.informatics.jax.org/searchtool/Search.do?query=MGI:4362642. 
  16. ^ Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature 474 (7351): 337–342. DOI:10.1038/nature10163. PMID 21677750.  edit
  17. ^ Dolgin E (2011). "Mouse library set to be knockout". Nature 474 (7351): 262–3. DOI:10.1038/474262a. PMID 21677718. 
  18. ^ Collins FS, Rossant J, Wurst W (2007). "A Mouse for All Reasons". Cell 128 (1): 9–13. DOI:10.1016/j.cell.2006.12.018. PMID 17218247. 
  19. ^ van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism.". Genome Biol 12 (6): 224. DOI:10.1186/gb-2011-12-6-224. PMC 3218837. PMID 21722353. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3218837. 
  20. ^ a b Takahashi, Mikiko; Yamagiwa Akiko, Nishimura Tamako, Mukai Hideyuki, Ono Yoshitaka (Sep. 2002). "Centrosomal Proteins CG-NAP and Kendrin Provide Microtubule Nucleation Sites by Anchoring γ-Tubulin Ring Complex". Mol. Biol. Cell (United States) 13 (9): 3235–45. DOI:10.1091/mbc.E02-02-0112. ISSN 1059-1524. PMC 124155. PMID 12221128. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=124155. 
  21. ^ a b Larocca, M Cecilia; Shanks Ryan A, Tian Lan, Nelson David L, Stewart Donn M, Goldenring James R (Jun. 2004). "AKAP350 Interaction with cdc42 Interacting Protein 4 at the Golgi Apparatus". Mol. Biol. Cell (United States) 15 (6): 2771–81. DOI:10.1091/mbc.E03-10-0757. ISSN 1059-1524. PMC 420101. PMID 15047863. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=420101. 
  22. ^ a b Takahashi, M; Shibata H, Shimakawa M, Miyamoto M, Mukai H, Ono Y (Jun. 1999). "Characterization of a novel giant scaffolding protein, CG-NAP, that anchors multiple signaling enzymes to centrosome and the golgi apparatus". J. Biol. Chem. (UNITED STATES) 274 (24): 17267–74. DOI:10.1074/jbc.274.24.17267. ISSN 0021-9258. PMID 10358086. 
  23. ^ Marx, Steven O; Kurokawa Junko, Reiken Steven, Motoike Howard, D'Armiento Jeanine, Marks Andrew R, Kass Robert S (Jan. 2002). "Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel". Science (United States) 295 (5554): 496–9. DOI:10.1126/science.1066843. PMID 11799244. 
  24. ^ Alto, Neal M; Soderling Scott H, Hoshi Naoto, Langeberg Lorene K, Fayos Rosa, Jennings Patricia A, Scott John D (Apr. 2003). "Bioinformatic design of A-kinase anchoring protein-in silico: A potent and selective peptide antagonist of type II protein kinase A anchoring". Proc. Natl. Acad. Sci. U.S.A. (United States) 100 (8): 4445–50. DOI:10.1073/pnas.0330734100. ISSN 0027-8424. PMC 153575. PMID 12672969. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=153575. 

Further reading [link]


https://wn.com/AKAP9

Human Genome Organisation

The Human Genome Organisation (HUGO) is an organization involved in the Human Genome Project, a project about mapping the human genome. HUGO was established in 1989 as an international organization, primarily to foster collaboration between genome scientists around the world. The HUGO Gene Nomenclature Committee (HGNC), sometimes referred to as "HUGO", is one of HUGO's most active committees and aims to assign a unique gene name and symbol to each human gene.

History

HUGO was established in late April 1988 at the first meeting dedicated to genome mapping at Cold Spring Harbor. The idea of starting the organization stemmed from a South African biologist by the name of Sydney Brenner, who is known for his significant contributions to work on the genetic code and other areas of molecular biology, as well as winning the Nobel prize in Physiology of Medicine in 2002. A Founding Council was elected at the meeting that total 42 scientists from 17 different countries. HUGO is grounded in Geneva Switzerland, and later went on to elect an additional 178 members, bringing the total up to 220.

Podcasts:

PLAYLIST TIME:
×