Adobe RGB color space

The Adobe RGB (1998) color space is an RGB color space developed by Adobe Systems, Inc. in 1998. It was designed to encompass most of the colors achievable on CMYK color printers, but by using RGB primary colors on a device such as a computer display. The Adobe RGB (1998) color space encompasses roughly 50% of the visible colors specified by the CIELAB color space – improving upon the gamut of the sRGB color space, primarily in cyan-green hues.

Historical background

Beginning in 1997, Adobe Systems was looking into creating ICC profiles that its consumers could use in conjunction with Photoshop's new color management features. Since not many applications at the time had any ICC color management, most operating systems did not ship with useful profiles.

Lead developer of Photoshop, Thomas Knoll decided to build an ICC profile around specifications he found in the documentation for the SMPTE 240M standard, the precursor to Rec. 709. SMPTE 240M's gamut was wider than that of the sRGB color space, but not by much. However, with the release of Photoshop 5.0 nearing, Adobe made the decision to include the profile within the software.

RGB color space

An RGB color space is any additive color space based on the RGB color model. A particular RGB color space is defined by the three chromaticities of the red, green, and blue additive primaries, and can produce any chromaticity that is the triangle defined by those primary colors. The complete specification of an RGB color space also requires a white point chromaticity and a gamma correction curve. As of 2007, sRGB is by far the most commonly used RGB color space.

RGB is an abbreviation for red–green–blue.

Intuition

An RGB color space can be easily understood by thinking of it as "all possible colors" that can be made from three colourants for red, green and blue. Imagine, for example, shining three lights together onto a white wall: one red light, one green light, and one blue light, each with dimmer switches. If only the red light is on, the wall will look red. If only the green light is on, the wall will look green. If the red and green lights are on together, the wall will look yellow. Dim the red light and the wall will become more of a yellow-green. Dim the green light instead, and the wall will become more orange. Bringing up the blue light a bit will cause the orange to become less saturated and more whitish. In all, each setting of the three dimmer switches will produce a different result, either in color or in brightness or both. The set of all possible results is the gamut defined by those particular color lamps. Swap the red lamp for one of a different brand that is slightly more orange, and there will be a slightly different gamut, since the set of all colors that can be produced with the three lights will be changed.

Color space

A color space is a specific organization of colors. In combination with physical device profiling, it allows for reproducible representations of color, in both analog and digital representations. A color space may be arbitrary, with particular colors assigned to a set of physical color swatches and corresponding assigned names or numbers such as with the Pantone system, or structured mathematically, as with Adobe RGB or sRGB. A color model is an abstract mathematical model describing the way colors can be represented as tuples of numbers (e.g. triples in RGB or quadruples in CMYK); however, a color model with no associated mapping function to an absolute color space is a more or less arbitrary color system with no connection to any globally understood system of color interpretation. Adding a specific mapping function between a color model and a reference color space establishes within the reference color space a definite "footprint", known as a gamut, and for a given color model this defines a color space. For example, Adobe RGB and sRGB are two different absolute color spaces, both based on the RGB color model. When defining a color space, the usual reference standard is the CIELAB or CIEXYZ color spaces, which were specifically designed to encompass all colors the average human can see.

Podcasts:

PLAYLIST TIME:
×