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Acoustic wave propagation in the Sun

By T. Hartlep AND N. N. Mansour

1. Motivation and objectives

The evolution of the solar interior is a challenging and fascinating subject in physics and
is actively studied theoretically, numerically, and observationally. Numerical simulations
are becoming increasingly sophisticated. Realistic simulations of the three-dimensional
compressible magneto-hydrodynamic (MHD) equations have been performed for the shal-
low upper layer of the convection zone (Stein & Nordlund 2000). They capture convective
structures on the granular scale. Acoustic waves are included in these fully compressible
simulations. As a result, oscillation spectra obtained from such simulations are in good
agreement with solar measurements. Unfortunately, simulations of this type are not ex-
pected to be feasible for deep domains or for the whole sun anytime soon due to the
enormous computational requirements. However, we know that as we go deeper from
the surface of the sun, the turbulent flow structures become larger, and the Mach num-
ber decreases. In fact, for the most part, the solar interior convective motions are much
slower than the speed of sound with a Mach number estimated to be of order 10−2. It
is then possible to simulate the flow field by using the anelastic approximation proposed
by Gough (1969) and later adapted for the solar case by Gilman & Glatzmaier (1981),
instead of using the fully compressible equations. The approximation retains the effects
of stratification but filters out the much faster acoustic waves.

On the other hand, acoustic waves should not be forgotten completely. Helioseimol-
ogy, the study of solar oscillations, has been a very active field in recent years and has
made a profound impact on our understanding of the structure and dynamics of the sun.
For instance, helioseismic inferences are able to measure the differential rotation of the
sun. However, helioseismic inversion techniques are based on simplified models of solar
oscillations, which have not been tested for validity. For instance, global helioseismology
assumes that the sun is axisymmetric, but the real sun is not axisymmetric. The conse-
quences of the real, non-axisymmetric 3D structures for the oscillation properties, e.g.
frequencies, line-width, amplitudes, are not well known. Three dimensional numerical
simulations of acoustic wave propagation in the sun could test some of the assumptions
currently used and could provide artificial data for testing and calibrating helioseimic
inversion methods (Werne, Birch & Julien 2004). This project tries to make the first
steps in this direction.

2. Numerical method

In the following we summarize the mathematical model and the numerical method. We
briefly introduce the equations, the boundary conditions, the time differencing method,
and the spatial discretization. We also take a closer look at the coordinate singularities
arising in spherical coordinates and discuss their treatment in the numerical method.
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Figure 1. Speed of sound in a standard solar model as a function of
radius (Christensen-Dalsgaard 1996).

2.1. Basic equations and boundary conditions

We start with the simplest problem one can imagine. Of the various types of helioseismic
oscillations (p-, f-, and g-modes, i.e. pressure, surface gravity, and internal gravity waves),
we consider only the pressure waves and neglect any convection in the sun. The governing
equation is therefore a simple wave equation of the form:

∂2
t ρ = ∆(C2ρ), (2.1)

which can be written as a system of two first order equations:

∂tρ = −Φ (2.2)

∂tΦ = −∆(C2ρ). (2.3)

ρ denotes the density variations with respect to the background, ∆ is the Laplacian
operator, and C is the sound speed which itself is a function of space. Even though we
neglect the direct effects of the flow field on the waves, the effects of spatial temperature
variations are included through the change of sound speed. A non-reflecting boundary
condition is imposed at the upper radial boundary by adding a buffer layer. The equations
are modified by adding damping terms:

∂tρ = −Φ− σρ (2.4)

∂tΦ = −∆(C2ρ)− σΦ, (2.5)

where σ is the damping coefficient. It is independent of time and is set to be zero in the
interior, and it increases smoothly into the buffer layer. Recasting the equations by using
an integrating factor and applying the staggered scheme for the time differencing results
in

ρn+1 = exp(−σh)ρn − exp(−σh/2)Φn+1/2 (2.6)

Φn+3/2 = exp(−σh)Φn+1/2 − exp(−σh/2)∆(C2ρ)n+1, (2.7)

where h = tn+1 − tn is the time step.

2.2. Spatial discretization

The spatial resolution requirements vary considerably with radius due to the strong radial
variation of the sound speed (see Fig. 1). Ideally, we would like to change both the radial
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Figure 2. Illustration of an optimized grid for solar simulations. The radial spacing of knot
points is chosen according to the local sound speed such that the travel time for the waves from
one knot point to the next is approximately the same anywhere in the domain. For the same
reason, it is also advantageous to drop spherical modes as we go deeper into the sun in order to
decrease the angular resolution.

and angular resolution as we go deeper into the sun (see figure 2). This is possible by
using a B-spline method (Loulou, Moser, Mansour & Cantwell 1997; Kravchenko, Moin
& Shariff 1999; Hartlep & Mansour 2004) in radial direction and spherical harmonics
Y l,m for the angular dependencies, i.e. we use an expansion in the form

ρn(r, θ, φ) =
∑

l,m,j

ρ̂nl,m,jY
l,m(θ, φ)Bj(r) (2.8)

Φn(r, θ, φ) =
∑

l,m,j

Φ̂nl,m,jY
l,m(θ, φ)Bj(r). (2.9)

The B-splines Bj(r) are piecewise polynomials of a chosen order with local support (see
Fig. 3). Analogous to Hartlep & Mansour (2004) we plug the expansions in (2.6) and
(2.7) and project onto a B-spline Bi(r). The result is a linear set of equations for the
expansion coefficients at the next time step:

∑

j

ρ̂n+1
j Mi,j =

∑

j,k

ηj ρ̂
n
kN i,j,k − h

∑

j,k

ζjΦ̂
n+1/2
k N i,j,k (2.10)

∑

j

Φ̂
n+3/2
j Mi,j =

∑

j,k

ηjΦ̂
n+1/2
k N i,j,k − h

∑

j,k

ζj ĉ2ρ
n+1

k Ri,j,kl . (2.11)

ηj and ζj are the B-spline coefficients for the damping terms. The equations are solved
by inverting the matrix Mi,j . All matrix elements appearing in the above equations are
constant and are computed and stored at the beginning of a simulation. They depend
only on the B-spline order and the choice of radial knot points, except for Ri,j,kl , which
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Figure 3. Second-order B-splines defined on a sets of 5 knot points. Solid, dotted, dashed,
dash-dotted, dash-dot-dotted and long-dashed lines denote splines B1, . . . , B6, respectively.

also depends on the spherical harmonic degree l. The matrix elements are given by:

Mi,j =

∫
Bi(r)Bj(r)dr, (2.12)

N i,j,k =

∫
Bi(r)Bj(r)Bk(r)dr, (2.13)

Ri,j,kl =
(
Oi,j,k + 2P i,j,k − l(l + 1)Qi,j,k

)
, (2.14)

Oi,j,k =

∫
Bi(r)Bj(r)

∂2

∂r2
Bk(r)dr, (2.15)

P i,j,k =

∫
1

r
Bi(r)Bj(r)

∂

∂r
Bk(r)dr, (2.16)

Qi,j,k =

∫
1

r2
Bi(r)Bj(r)Bk(r)dr. (2.17)

Since the B-spline functions have local support, all matrices are sparsely populated band
matrices with k super- and k sub-diagonals. k is the polynomial order of the B-splines.
Computing the inverse of Mi,j is therefore computationally inexpensive.

2.3. Center singularity

The use of spherical coordinates, though appropriate for a spherical body, comes with
the problem of coordinate singularity that needs to be treated correctly. These singular
points are the polar axis (θ = 0) and the center of the sphere (r = 0). Using spherical
harmonics for the angular dependencies ensures that all solutions are smooth near the
poles. One way to avoid problems from the center singularity is to simply cut out the
central region in the simulation. Simulating to whole sphere, however, requires some
adjustments to the numerical method as we will see in the following. We start with a
scalar field expanded in spherical harmonics:

f(r, θ, φ) =
∑

l,m

f̂l,m(r)Y l,m(θ, φ), (2.18)

and apply, as in the acoustic wave equation, the Laplacian operator:

∆f(r, θ, φ) = ∆
∑

l,m

f̂l,m(r)Y l,m(θ, φ) =
∑

l,m

Y l,m(θ, φ)Llf̂l,m(r), (2.19)

where

Ll =
∂2

∂r2
+

2

r

∂

∂r
− l(l + 1)

r2
. (2.20)
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The problem lies with the 1/r and 1/r2 terms as r goes to zero. Not all smooth radial

functions f̂l,m(r) have smooth Laplacians at r = 0, as the simple example f̂l,m(r) = 1
illustrates. What we need is a condition for the radial functions that insures that the
Laplacian remains regular at the center of the sphere.

To derive such a constraint, we expand f̂l,m(r) in a Taylor series about the origin r = 0

f̂l,m(r) =
∞∑

p=0

al,m,pr
p , (2.21)

and we apply the Laplacian operator to each power individually:

Llrp = (p− l)(p+ l + 1)rp−2. (2.22)

For the case p−2 < 0, the derivative remains bounded only if the prefactor vanishes (i.e.
p = l). (2.22) is always a regular expression if, on the other hand, p − 2 ≥ 0. Applying
the Laplacian operator n-times, such that q = p−2n is greater or equal to zero, but q−2
is less than zero, yields:

(Ll)nrp = cp,nr
p−2n (2.23)

with

cp,n =

n∑

i=1

(
(p− 2i+ 2)− l

)(
(p− 2i+ 2) + l + 1

)
. (2.24)

If we now apply the operator one more time, we have:

(Ll)n+1rp = cp,n(q − l)(q + l + 1)rq−2 with q = p− 2n, (2.25)

and the exponent becomes negative. The expression therefore remains regular at the
center only if the prefactor vanishes, which is the case if q = l, and, correspondingly,
p = l+2n. In other words, the functional behavior near r = 0 of any valid radial function
can be written in the form

f̂l,m(r) =

∞∑

i=0

ai,l,mr
i with ai,l,m = 0 ∀ i 6= 2n+ l (n ∈ ). (2.26)

As we have seen, only functions that can be expressed in this way ensure a smooth field
at the origin. It can be shown that this constraint is not only necessary but sufficient in
that the number of degrees of freedom in an expansion in spherical harmonics with radial
functions of the form (2.26) equals the number of degrees of freedom in a corresponding
expansion in Cartesian coordinates x, y, and z where there is no coordinate singularity
to begin with.

Since in our numerical method all radial functions are expressed in terms of basis
splines, we need to translate the above constraint into a constraint for the corresponding
expansion coefficients. (2.26) applies only for the behavior near r = 0, and we can limit
the analysis to the very first interval I1 = [r0, r1]. Omitting the indices l and m for clarity,
the B-spline expansion for that interval reads:

f̂(r) =

k+1∑

i=1

αiB
i(r) (r ∈ I1). (2.27)

Here, we ignore higher B-splines (i > k+ 1), since they are identically zero in I1. The B-
spline functions themselves are piecewise polynomials with fixed polynomial coefficients



362 T. Hartlep & N. N. Mansour

βi,j such that f̂(r) in the first interval is given by an expansion

f̂(r) =
k+1∑

i=1

k∑

j=0

αiβi,jr
j (r ∈ I1). (2.28)

On the other hand, f̂(r) must also satisfy (2.26), which leads to a linear equation of the
form

k+1∑

i=1

αiβi,j = aj (j ∈ [0, k]). (2.29)

In general, this equation is under-determined, since the only a priori knowledge we have
about the ai’s is the constraint from (2.26) (i.e. ai = 0 ∀ i 6= 2n + l , n ∈ ). (2.29)
is solved symbolically for the αi’s, and the resulting constraints are then incorporated
into the B-spline method in the same way that boundary conditions are implemented,
see Hartlep & Mansour (2004).

3. Results

To validate this new numerical code, the first goal was to reproduce what is already
known about the acoustic field within the sun. One of the most important properties is
the existence of a discrete spectrum of standing oscillation modes. Acoustic waves are
created mainly by the turbulent flow close below the surface and, due to the sharp drop
in the sound speed near the surface of the sun, waves are, depending on their wavelength,
partially or totally reflected back into the interior. The sun becomes a resonating cavity.

To account for the random sound sources, we consider the following simple setup. We
excite waves by adding a random source term in the ρ equation. At each time step and
for each spherical harmonic mode (l,m) a Gaussian pulse at radial position r = 0.9R�,
with a width of σ = 0.02R� and a random amplitude, is added to the equation. In the
case we consider here, we use the radially symmetric sound speed from the standard solar
model shown earlier in Fig 1, there is no coupling between different spherical harmonic
modes. And, since we are only interested in normalized oscillation spectra, we can force
each mode with equal strength. After a transition period, the input of acoustic energy
from the source term and the loss through the surface reach an equilibrium, and the
sound field is in a statistically steady state.

The simulation parameters are as follows. We consider only spherical harmonic degrees
from l = 0 to l = 42 and do not drop radial modes with radius, even though this capability
in available in the code. In the radial direction, B-splines of order 4 are used, generated
from a set of 125 knot points. The spacing of the knots is varied over the radius and
is proportional to the local sound speed: small at the top and large in the interior. The
travel time of an acoustic wave from one knot point to the next is therefore approximately
the same anywhere in the domain. Instead of treating the center singularity in the way
explained in section 2.3, here we leave out the center completely and only consider radii
from 0.2× 108m to 7.2× 108m. This, at least in this uncoupled case, only affects modes
with very low harmonic degree, since those are the only ones that reach deep enough
into the interior. Buffer layers both at the top (reaching down to about 6.9 × 108m,
slightly below the solar surface R� ≈ 6.96 × 108m) and at the lower end of the radial
domain (going up to about 2× 108m) are used. A time step of h = 0.25s is used, which
is smaller than the travel time for a wave between any two neighboring knot points. The
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Figure 4. Normalized acoustic power spectrum as a function of spherical harmonic degree l,
averaged over all azimuthal numbers m.

simulation is run for a total of 800,000 time steps to provide a reasonable amount of data
for statistical analysis.

The power spectrum of the acoustic modes computed from the simulation is shown in
Fig. 4. Individual spectra for each spherical harmonic degree l and azimuthal number m
are computed from time series of the amplitude of a B-spline located at about 0.9R�. The
spectra are normalized such that the sum over all frequencies equals to one, and are then
averaged over azimuthal number m. As seen in the figure, bands of oscillation modes with
frequencies increasing with spherical harmonic degree l are present. This qualitatively
agrees with spectra from theoretical models and actual measurements (see e.g. Rhodes
et al. (1997); Christensen-Dalsgaard (2002)), though there is a slight abnormality at very
low l, notably l = 4. As mentioned earlier, this might be related to a shading effect that
the inner buffer layer may have on the low-l modes. Quantitative comparisons of the
observed frequencies have not been made yet, but the modes seen in the spectrum are
definitely in the correct range of frequencies. More precise comparisons are the next step
in our investigation.

We mentioned earlier that modes with low harmonic degree penetrate deep into the
interior, while modes with higher harmonic degree are mostly confined to the outer part
of the sun. Figure 5, which shows a snapshot of the contributions of different spherical
harmonic degree to the total wave field, supports that claim. At a low degree of l = 5,
a substantial amplitude is found even close to the lower damping layer (0.2R�), while
higher l-modes have already decayed at a much larger radius. This property can be
exploited to drop unnecessary spherical modes at low radii.
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Figure 5. Snapsshot of the density variations in the acoustic field from a randomly forced sim-
ulation as explained in the text. Shown are the contributions of modes with spherical harmonic
degree l = 5, 10, 20 and 40. The scale is different for each panel due to the different amplitude
of each mode, but white always corresponds to the lowest and black to the highest value in that
l-mode. Buffer layers are not shown.

4. Future work

We have presented a method for simulating the propagation of acoustic pressure waves
in a three-dimensional model of the sun in spherical coordinates. Spatial discretization is
by means of spherical harmonic functions and B-splines. A staggered Yee scheme is used
for the time differencing. Results for a simple simulation with radially symmetric sound
speed and without any flow field have been presented.

The current model is too simple to be of much practical use, but it demonstrates the
feasibility of such global acoustic wave simulations. Modifications to the equations are
planned to incorporate important factors such as the effects of convection and differential
rotation on the waves. More accurate modeling of the acoustic sources is another problem
that needs to be addressed. One idea is to use statistical data extracted from compressible
flow simulations of the upper part of the sun’s convective layer, where the sources are
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primarily situated. Not only will we be able to learn more about solar oscillation, but
these future simulations can be used to test and to help improve current helioseismic
inversion techniques.
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