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John Pell (1611-1685) An “obscure” English Mathematician 

• Part of the 17th century intellectual history of England and of Continental 
Europe. 

 

• Pell was married with eight children, taught math at the Gymnasium in 
Amsterdam, and was Oliver Cromwell’s envoy to Switzerland. 

 

• Pell was well read in classical and contemporary mathematics. 

 

• Pell had correspondence with Descartes, Leibniz, Cavendish, Mersenne, 
Hartlib, Collins and others. 

 

• His main mathematical focus was on mathematical tables:  tables of squares,  
sums of squares, primes and composites, constant differences, logarithms, 
antilogarithms, trigonometric functions, etc. 
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John Pell (1611-1685) An “obscure” English Mathematician 

• Many of Pell’s booklets of tables and other works do not list himself as the 
author. 

 
• Did not publish much mathematical work.  Is more known for his activities, 

correspondence and contacts. 
 

• Only one of his tables was ever published (1672), which had tables of the first 
10,000 square numbers.  
 

• His best known published work is, “An Introduction to Algebra”. It explains how 
to simplify and solve equations. 
 

• Pell is credited with the modern day division symbol and the double-angle 
tangent formula. 
 

• Pell is best known, only by name, for the Pell Sequence and the Pell Equation. 
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John Pell (1611-1685) An “obscure” English Mathematician 

• Division Symbol: 

 

• Double-Angle Tangent Formula: 

 

 

• Pell Sequence: 

 

 

 

• Pell Equation:     
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

pn  2pn1  pn2







tan 2 
2tan

1 tan2



p0 1,p1  2,n 2



x2 2y2  1



John Pell (1611-1685) An “obscure” English Mathematician 

• Both the Pell Sequence and the Pell Equation are erroneously named after him. 

 

• Euler, after reading John Wallis’s “Opera Mathematica”, mistakenly gave credit 
to Pell for the Pell Equation. 

 

• He had constant financial trouble throughout his life and was twice imprisoned 
for unpaid debts.  

 

• In summary, Pell seemed easily distracted, had multiple projects going on at 
once, and many unfinished projects.  Not a well known mathematician because 
of lack of publishing and the desire to remain anonymous. 

 

• Despite all this, he dedicated much of his life to mathematics and therefore is 
recognized as a minor figure in the history of mathematics. 
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The Pell Sequence 

• Defined by the recurrence relation: 

 

 

 

 

• The first few terms of the Pell Sequence are: 

 

 

  

 

 

 

 

 

 

 

 



pn  2pn1  pn2



p0 1,p1  2,n 2



1,2,5,12,29,70,168,408,.....



p2  2p21  p22  2p1  p0  2 2 1 5

p3  2p31  p32  2p2  p1  2 5  2 12

p4  2p41  p42  2p3  p2  2 12  5  29

etc ......
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The Pell Sequence 

 

 
• One solution to the recurrence relation is: 

 
 
 

 
 
 

• Here is a second solution to the recurrence relation: 
 

 
 
 
 
 

 
 

 
 
 

pn 
i  j  k !
i! j!k!

i, j ,k0
i j2kn


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

pn 
2

4
1 2 

n

 1 2 
n




n 1



The Pell Sequence 

• Here is how to find the first term in the Pell Sequence using the second 
solution: 

 

 

 

 

 

 

 

 

 

 

• Now,  it is your turn! 
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

p0 1

i  j  2k  n

i  j  2k  0

i, j,k 

0,0,0 

0  0  0 !

0!0!0!

1

1
1

p0 1



 Verification of the Pell Sequence 

• Let            count the number of ways to fill an                              flagpole. 

 

• There are red, white, and blue flags. 

 

 

 

• Red and blue flags are each 1 feet tall and white flags are 2 feet tall. 

 

• If all flags are blue or red or any combination of the 2, then the possibilities 
are: 

 

 

 



pn



n  foot



red  i,blue  j,white  k



p0 1,p1  2,n 2



36  729
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Verification of the Pell Sequence 

•  Consider for all cases which flag is at the top of the flagpole. 

 

• Case 1:  If a blue flag is on top then anything underneath is: 

 

 

• Case 2:  If a red flag is on top then anything underneath is: 

 

 

• Case 3:  If a white flag is on top then anything underneath is: 

 

 

•   The cases yield the desired recurrence relation which is the Pell Sequence: 
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

pn1



pn1



pn2



pn  2pn1  pn2



Verification of the Pell Sequence 

• Here are some examples on a case-by-case basis: 

 

• 1)  There is one way to fill a zero-foot flagpole if all flags are zero feet tall. 

 

 

• 2)  There are 2 ways to fill a 1-foot flagpole with either a blue or red flag 

 

 

   

•  3)  There are 5 ways to fill a 2-foot flagpole:  



n  0p0 1 i, j,k  0,0,0 i j 2k  002 0  0



n 1 p1  2 i, j,k  1,0,0 i  j 2k 1102 0 1

or 0,1,0 012 0 1



n  2 p2  5 i, j,k  2,0,0 , 0,2,0 , 0,0,1 1,1,0 , 1,1,0 

i  j 2k  2
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

red  i, j  blue,k white



Properties of the Pell Sequence 

• Here is the Pell Sequence recurrence relation and the first few terms. 
 

 
 
 
 
•  Sometimes the sequence begins with zero. 

 
• Here is one solution to the Pell Sequence. 
 

 
 

• The only triangular Pell number is 1. 
 

• For a Pell number to be prime, the index needs to be prime. 
 
 
 
 

 
 



1,2,5,12,29,70,169,408,...



pn  2pn1pn2



p0 1,p1  2,n 2



pn 
2

4
1 2 

n

 1 2 
n




,n 1
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Properties of the Pell Sequence 

• The only Pell numbers that are cubes, squares or any other higher power are: 

 

 

 

• The Pell Numbers can be represented geometrically with the “Silver               
Rectangle”.  The ratio of length to width is length “y” and width 1. 

 

• When 2 squares with the side equal to the width are taken out of the rectangle, 
what remains has the same ratio of length to width as the original rectangle. 

 

• Here is an algebraic representation:  
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

0,1,144



y

1

1

y 2
y2 2y 1 0y  1 2 



Properties of the Pell Sequence 
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Properties of the Pell Sequence 
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Properties of the Pell Sequence 

• The generating function for the Pell Sequence is: 
 

 
 

 
• The Pell numbers can be generated by the matrix: 

 
 

 
 

 
• Identities of the Pell Sequence can produce Pythagorean Triples and square 

numbers. 
 
 
 
 
 

 
   



1

12x  x 2
 Pnx

n

i1







M 
2 1

1 0









,M

n 
Pn1 Pn

Pn Pn1










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Properties of the Pell Sequence 

• The proportion               or         is used in paper sizes A3, A4 and others. 

 

• The Pell Numbers are the denominators of the fractions that are the closest 
rational approximations to the  

 

 

 

 

 

• The sum of the numerator and the denominator of the previous term is the 
denominator of the current term.             



2 :1



99

70



2



1

1
,
3

2
,
7

5
,
17

12
,
41

29
,
99

70
,...
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Properties of the Pell Sequence 

• The numerator of the current fraction is the sum of the numerator and 2 times 
the denominator of the previous fraction. 

 

 

 

 

• Alternating fractions determine approximations closer and closer to the 

  

 

      

 

 



1

1
,
3

2
,
7

5
,
17

12
,
41

29
,
99

70
,...



2



1

1
,
7

5
,
41

29
,... 2...,

99

70
,
17

12
,
3

2
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Properties of the Pell Sequence 

• There is a relationship between the Pell Sequence and the Pell Equation. 

 

• The Pell Equation is defined:  

                    

 

• and,  if  

 

                                                        

 

• Then         and         will satisfy the Pell Equation. 
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

x2 2y2  1



x  pn1  pn



y  pn



x



y



Properties of the Pell Sequence 

• Example:   

21 



p2  5x  p21  p2  y  p2

x  p3  p2 y  p2

x 12  5  7 y  5

x 2  2y 2  1

72  2 5 
2
49  50  1
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Introduction to recurrence relations 

• A sequence of numbers can be defined recursively by what is known as a 
recurrence relation. 

 

• The sequence of numbers:                                    

 

 

• can be defined with the recurrence relation:                       

 

                        

 

• The first few terms are known as the initial conditions of the sequence. 

 

 



1,2,5,12,29,70,169,408,.....



pn  2pn1  pn2

24 



p0 1,p1  2,n 2



Introduction to Recurrence Relations 

• The numbers in the list are the terms of the sequence.  

 

  

 

• A “solution” to the recurrence relation is: 

 

 

 

 

 

•   This is also known as an “explicit” or “closed-form” formula. 
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

pn 
2

4
1 2 

n

 1 2 
n




n 1

p0 1,p1  2,p2  5,etc ...



4 techniques for solutions to recurrence relations: 
Guess and check with the Principle of Mathematical Induction 

• Guess and check with the Principle of Mathematical Induction. 

 

• Consider the sequence defined by: 

 

                                    

 

• The first few terms in the sequence can be computed as follows: 

 

 

 

 

 



a1 1



n 2



an  2an1 1



a1 1

a2  2a21 1 2a1 1 2 1 1 3

a3  2a31 1 2a2 1 2 3 1 7

a4  2a41 1 2a3 1 2 7 115

a5  2a51 1 2a4 1 2 15 1 31

a6  2a61 1 2a5 1 2 31 1 63
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4 techniques for solutions to recurrence relations: 
Guess and check with the Principle of Mathematical Induction 

•  From this data we can notice a pattern and guess a formula: 

  

 

 

 

 

 

 

 

 

• Use induction to prove                                  holds for all     

 

 



a1  2
1 1 1

a2  2
2 1  3

a3  2
3 1  7

a4  2
4 1 15

a5  2
5 1  31

a6  2
6 1  63

an  2
n 1,n 1



an  2
n 1



n 1
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4 techniques for solutions to recurrence relations: 
Guess and check with the Principle of Mathematical Induction 

 

• Proof:  (i)  Base cases:  For  

 

 

• (ii) induction step: 

 

• Assume                      is   true, then                            is true.  Then 

 

 

 

 

 

• Therefore by induction                      holds for all  



an  2
n 1



an1  2
n1 1



an1  2a n1 1
12an 12 2

n 1 1

2n1 212n1 1

an  2
n 1



n 1

28 



n 1an  2
n 1a1  2

1 11.



4 techniques for solutions to recurrence relations: 
The Characteristic Polynomial 

• Consider the recurrence relation: 
 
 
 
 
 

• Solution 
 

                                 
 
 
 

 
 

 
 

 
 
 
 

                                                       



an  5an1 6an2



a0  5,a1 19,n 2





an  5an1  6an2

an  5an1  6an2  0

x 2  5x  6 x 1  x  6   0

x1  6,x2 1

an  c1 x1
n  c2 x2n 

an  c1 6
n  c2 1n 

a0  55  c1 6
0  c2 10 

5  c1  c2 equation1

a1 1919  c1 6
1  c2 11 

19  6c1  c2 equation2

29 







4 techniques for solutions to recurrence relations: 
The Characteristic Polynomial 

• Multiplying  equation 1 by 6 and adding equation 1 to equation 2 
yields: 
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

c1  2,c2  7

an  2 6
n  7 1n an  2 6

n  7,n 0



4 techniques for solutions to recurrence relations: 
Generating Functions 

Consider the recurrence relation: 

 

Solution: 



f x   anx
n

n0





f x   a0x 0  2an1 x n
n1





f x  1 2 an1 x n
n1





f x  1 2x an1 x n1
n0





f x   anx
n

n0



  f x  1 2xf x 

f x  2xf x  1 f x  1 2x  1

f x  
1

1 2x
 f x   2x 

n
 f x   2n x n

n0




n0





an  2
n n  0.
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

an  2an1



a0 1,n 1







4 techniques for solutions to recurrence relations: 
Linear Algebra 

• Solve the recurrence relation: 

 

                                                     

 

• Solution:  

 

                                

 

 

 

                              

 

  

 

 

 

 



a0  4,a1  0,n 1



an1  3an 2an1



vn  A
n  vn1

an1

an











3 2

1 0










an

an1











Anv0  A
n
a1

a0









 A

n
0

4










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4 techniques for solutions to recurrence relations: 
Linear Algebra 

• Next is the characteristic polynomial of  A by the diagonalization of A  
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

A  I  
3 2

1 0











 0

0 











3  2

1 











det A  I   3     2  1 

2  3  2  0   2   1 1 1,2  2

D 
1 0

0 2











1 0

0 2













4 techniques for solutions to recurrence relations: 
Linear Algebra 

• The Eigen vectors of A are:         and          The Eigen space for A is: 

 

 

 

 

 

• To find the Eigen space for                 we have:                                                                                                                                                                                                         

                                                                                                                                                                                       

 
 

 

 

 

 

                                                                                                                                                                                                                                                             



1 1



A  I x  0

3 1 2

1 1










x1

x2









 0

2 2

1 1










x1

x2









 0

2x1  2x2  0

x1  x2  0

34 



1 0

0 2













1



2



4 techniques for solutions to recurrence relations: 
Linear Algebra 

• Where                  is free and                           and: 

 

 

 

                        

             

• To find the Eigen space for                 we have:  
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

A  I x  0

3 2 2

1 2










x1

x2









 0

1 2

1 2










x1

x2









 0

x1  2x2  0

x1  2x2  0



2  2



x 
t1

t1








 t1

1

1












x2  t1



x1  x2  t1



4 techniques for solutions to recurrence relations: 
Linear Algebra 

• Where                   is free and                                     and: 

 

 

 

 

 

• Then we will write the matrices                       to solve for A: 

 

 

 



x2  t2



x1  2x2  2t2



x 
2t2

t2









 t2

2

1












P,P1,D



P 
t1 t2

t1 t2











1 2

1 1











D 
1 0

0 2













P1 
1 2

1 1










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4 techniques for solutions to recurrence relations: 
Linear Algebra 

Solution: 



P 1 
1

ad  bc

d b

c a











1

1  1  2  1 

1 2

1 1











P 1  
1 2

1 1











1 2

1 1











P 1AP  D A  PDP1

vn  A
nv0  PDP 1 vo  PDP 1 

0

4











P 1v0 
1 2

1 1










0

4











8

4











PDn 
1 2

1 1










1 0

0 2n










1 2n1

1 2n











vn  PD
n  P 1v0

vn 
1 2n1

1 2n










8

4











8  4 2n1 
8  4 2n 















an1

an

an  8  4 2
n an  4 2  2n  ,n  0.
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Curriculum for Instructors and Students 

• The curriculum consists of 8 lessons:  Introduction to Recurrence Relations, 
Characteristic Polynomial, Checking Explicit Formulas, Guess and Check with 
Induction, Pell Sequence, Tower of Hanoi, Generating Functions, Linear Algebra 

 

• Each lesson has a lesson plan, student handout, instructor solutions, and lesson 
reflection.  In the case of the Tower of Hanoi models were made. 

 

• All lessons were done except for Generating Functions and Linear Algebra due 
to time constraints and students lacking prerequisites. 

 

• The unit was done with my high school Advanced Algebra 2 class with mostly 
10th and 11th grade students with a few 12th and 9th grade students.  The unit 
was done January 2011. 
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Curriculum for Instructors and Students 

• A chapter on recursive sequences in their Advanced Algebra 2 book was done 
before the curriculum.  It contained arithmetic and geometric sequences, 
writing recursive formulas, shifted geometric sequences- (concept of a limit), 
graphs of sequences, application problems. 

 

• Students had the most success with Introduction to Recurrence Relations, 
Characteristic Polynomial, Pell Sequence and Tower of Hanoi. 

 

• Students had the least success with Checking the Explicit Formula, and Guess 
and Check with Induction. 

 

• Here are some examples of student work which are contained within the 
student handouts.    
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Characteristic Polynomial – Student Work 
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Pell Sequence – Student Work 
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Alternate Pell Formula – Student Work 
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Checking the Explicit Formula – Student Work 
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Induction – Student Work 
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Tower of Hanoi – Student Work 
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Intro to Recurrence Relations – Student Work 
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Curriculum for Instructors and Students 

• Summary of Curriculum: 

 

• Overall it went well, sometimes painful and sometimes beauty 

 

• Small class of 24 students, many smart and motivated students, I have known 
many of them since 6th grade. 

 

• Summary of M.S.T. 501 project: 

 

• It took about 9-12 months, summer 2010 getting ideas, fall-winter 2010-2011 
doing math, winter-spring 2010 paper and power point. 
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