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Abstract—This paper introduces the Mode and Fault Tol-
erance Views approach to stepwise rigorous development of
critical systems. It supports systematic, structured and recursive
modelling of system fault tolerance, including error detection,
error recovery and degraded modes. Built on our previous
work extending the Event-B method with reasoning about fault
tolerance, the paper focuses on a practical application and
evaluation of the approach. The proposed modelling approach
is backed by an integrated toolset. The paper is illustrated with
a case study from the aerospace domain.
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I. INTRODUCTION

This work is based on the analysis of the requirements
documents and models produced by the industrial partners
within the FP7 DEPLOY Integrated Project1 on industrial
deployment of system engineering methods providing high
dependability and productivity. The partners represent the
aerospace, automotive and transportation sectors. During this
analysis we have investigated the ways in which fault tol-
erance, fault assumptions, and, in particular, error detection
and error recovery are described by the system stakeholders.
First of all, we have found that dealing with these aspects
represent a substantial part of system requirements (up to 35-
40%). Moreover, we have found that the major source of faults
to be dealt with by these systems is the environment, including
sensors, external networks and operators. These requirements
typically include descriptions of degraded functionalities, the
most typical example being system safestop.

More generally, we observe that the requirements include in-
formation about how the general system behaviour is affected
by various abnormal situations. In spite of the success of this
analysis we should mention here that, unfortunately, this infor-
mation is rarely stated as the priority requirements (too often
we had to deduce this information from other requirements).
A possible source of confusion is the terminology - industrial
partners may prefer to use euphemisms to replace terms such
as system failures, faults and errors.

We have found that nearly all system requirements in-
volve the concept of operational modes to refer to various
operational conditions resulting in differing functionalities
provided by the system. As a result of this, system modes

1ICT DEPLOY project - http://www.deploy-project.eu/

and mode transitions are often intertwined with error recovery;
sometimes this includes fault handling by system degradation.
The same intertwining can be observed at the modelling stage
where one can hardly comprehend which part of the model
represents the recovery activities, and which part corresponds
to the normal system operation. This and similar analysis
clearly demonstrate that for the majority of critical system
developments it is crucial to have an explicit view on the
fault tolerance-related part of the system to reduce the chance
of a design fault, to improve the dependability requirement
traceability and to meet the certification needs.

It is widely accepted by the software engineering commu-
nity that it is beneficial to support multiple views on the model,
so that each of the views can focus on a particular concern
of the model/system [1]. This facilitates system development
by explicitly bounding the modeller into a specific context
without cluttering the model (an example of this are multiple
views provided by UML). In this paper we present an approach
to expressing fault tolerance (FT) views on formal models of
software and hardware system and describe a supporting tool
that provides a substantial mechanisation of the handling and
validation of FT views.

The rest of the paper is organised as follows. Section II
briefly describes Event-B - a formal notation and method for
the correct-by-construction system development. Section III
gives a general overview of the FT Views approach. We give a
detailed description of the case study in section IV and discuss
its outcomes in section V.

II. MODELLING AND REFINEMENT IN EVENT-B
The Event-B framework [2] is an evolution of the B

Method [3]. The Event-B development starts from creating
a formal system specification. The basic idea underlying
stepwise development in Event-B is to design the system im-
plementation gradually, by a number of correctness preserving
steps called refinements.

A simple Event-B specification (called machine) encapsu-
lates a local state (program variables) and provides operations
on the state. The operations (called events) can be defined as

ANY vl WHERE g THEN S END

where vl is a list of new local variables (parameters), the
guard g is a state predicate, and the action S is a statement



(assignment) describing how the system state is affected by
the event. The occurrence of events represents the observable
behaviour of the system. When the condition WHERE is sat-
isfied, an event is enabled and its action can be executed. The
action S can be either a deterministic or a non-deterministic
assignment.

The INVARIANT clause of the machine contains the prop-
erties of the system (expressed as state predicates) that should
be preserved during system execution. The data types and
constants needed for specification of the system are defined
in a separate component called Context.

To check consistency of an Event-B machine, we should
verify two types of properties: event feasibility and invariant
preservation. Formally,

Inv(v) ∧ ge(v) ⇒ ∃v′. Poste(v, v′)
Inv(v) ∧ ge(v) ∧ Poste(v, v′) ⇒ Inv(v′)

The main development methodology of Event-B is refine-
ment – the process of transforming an abstract specification
to gradually introduce implementation details while preserv-
ing its correctness. Refinement allows us to reduce non-
determinism present in an abstract model. For a refinement
step to be valid, every possible execution of the refined
machine must correspond to some execution of the abstract
machine.

To demonstrate that each event is a correct refinement of
its abstract counterpart, we should prove that the guard is
strengthened in the refinement, and also demonstrate a corre-
spondence between the abstract and concrete postconditions.
Formally,

Inv(v) ∧ Inv′(v, w) ∧ g′e(w) ⇒ ge(v)
Inv(v) ∧ Inv′(v, w) ∧ g′e(w) ∧ Post′e(w, w′) ⇒

∃v′. (Poste(v, v′) ∧ Inv′(v′, w′))

where the primed expressions g′, Inv′, Post′ belong to
the refined model. The machines linked with each other by
refinement form a development chain, or in a more general
case development represents a tree.

The consistency of Event-B models as well as correctness of
refinement steps should be formally demonstrated by discharg-
ing proof obligations. The Rodin platform[4], a tool supporting
Event-B, automatically generates the required proof obliga-
tions and attempts to automatically prove them. Sometimes
it requires user assistance by invoking its interactive prover.
However, in general the tool achieves high level of automation
(usually over 90%) in proving.

III. FT VIEWS

The FT Views [5] is a modelling environment for describing
the fault tolerance aspect of a system in a concise manner
while formally linking it to the main model. Much of the
formal foundations of FT Views are based on the previous
work on modelling modal systems [6].

This work briefly presents the overall approach and de-
scribes its recent improvements. It reports on our recent work

on introducing a tool support and on approach evaluation
during development of an industrial system from the aerospace
domain. This evaluation allowed us to improve both the
theoretical foundations and the supporting tool, and to gain
experience in rigorous engineering of fault tolerance systems
using this approach.

A. Overview

A Mode/FT view is a graph diagram developed alongside
an Event-B model which contains modes and transitions along
with additional information necessary for establishing a formal
connection with the model. The two basic concepts of the
Mode View are mode and transition. Mode is a general charac-
terisation of a system behaviour. It describes the functionality
of a system and the operating conditions under which the
system provides this functionality. A system switches from
one mode to another through a mode transition.

The FT Views adds two types of transition specialisation: an
error and a recovery transitions. Relative to the transition and
its type, we differentiate the FT types of modes: we say that
an error originates in a normal mode and leads to switching to
a degraded mode or a recovery mode. The recovery transition
leads from the recovery mode back to normal. The distinction
between the degraded and recovery modes is that the recovery
mode is obliged to terminate and pass control back to the
mode from which the initiating error originated. Safe-stop is
regarded as a special case of a degraded mode.

Diagrams are built in a step-wise manner, starting from the
most primitive and introducing details using our detalisation
process [5]. An FT Views development comprises a chain of
documents similar to Event-B development. FT views are built
by incrementally adding new modes, errors and recoveries
using the provided templates, and proving the refinement
relationship between each two consequent views.

[5] introduces the concept of detalisation templates for FT
Views development with two general classes of fault tolerant
systems that a modeller should use as an initial step during
the FT modelling. The first class comprises the systems which
are able to mask all the detected errors. The systems of
the second class have recovery or degraded modes at the
abstract level as they are incapable of masking some errors.
By using detalisation templates a modeller can refine a mode
and differentiate recovery activities from normal operation, or
split an abstract recovery into a number of concrete recoveries
from specific errors thus covering the requirements.

B. Event-B Link

An FT view is linked with a formal model and ensures that
the model implements the features described in the view. For
that, modes are mapped into groups of events.

We use the terms assumption to denote the different op-
erating conditions and guarantee to denote the functionality
ensured by the system under the corresponding assumption.
Formally, a mode is characterised by a pair A/G where:
• A(v) is an assumption - a predicate over the current

system state;



• G(v, v′) is a guarantee, a relation over the current and
next states of the system; and

• vector v is the set of model variables.
With assumption and guarantee of a mode being predicates

expressed on the variables of a model, we are able to impose
restrictions on the way modes and transitions are mapped into
model events and thus cross-check design decisions in either
part.

A system switches from one mode into another through a
mode transition that non-deterministically updates the state of
v in such a way that the assumption of the source mode be-
comes false while the assumption of the target mode becomes
true. Transitions are also mapped into groups of events each
of which must implement an instantaneous transition action.

The link with event guards and actions is ensured by
generating a number of proof obligations derived from the
study on modal systems [6]. The full list is provided on a
Mode/FT Views wiki page [7].

C. Building diagrams

The tool support for the Mode/FT Views is a plug-in [7] to
the Rodin Platform providing a diagram editor, static checker,
and a proof obligation (PO) generator.

The cornerstone of the technique is an assisted construc-
tion of Mode/FT views coordinated with a chain of Event-
B refinements. One starts building a Mode/FT diagram by
placing modes and linking them with transitions. The main
feedback from the tool is in the form of the consistency
proof obligations. The proof obligation generator and the
automated provers run in background and a user may almost
immediately observe the change in the number of discharged
theorems. Analysing undischarged conditions is an efficient
technique in debugging a model. After some time, a user of the
Platform becomes quite adept at spotting missing hypothesis
and contradictory statements and mentally translating them
into the concepts of the modelled system.

The full list of verification conditions (proof obligations)
and details on the meaning and purpose may be found in [7],
[6], [8], [5].

IV. AOCS CASE STUDY

The Attitude and Orbit Control System (AOCS) [9] is a
generic component of a satellite onboard software, the main
function of which is to control the attitude and the orbit of
a satellite. Due to the tendency of a satellite to change its
orientation because of disturbances of the environment, the
attitude needs to be continuously monitored and adjusted. An
optimal attitude is required to support the needs of payload
instruments and to fulfil the mission of the satellite. For
example, attitude control may ensure that an optical system of
the spacecraft will continuously cover the required area on the
ground. AOCS consists of seven physical units: four sensors
providing measurements to control algorithms, two actuators
and the payload instrument.

A satellite can be in various operational modes, largely
determining its behaviour [9]: Off, Standby, Safe, Nominal,

Preparation and Science. The satellite is in the Safe mode
from the moment separation from the launcher is achieved.
In this mode it tries to acquire and preserve a stable attitude.
From Safe, satellite progresses to modes where more sensors
and actuators are involved. The overall aim is to enter and
stay in the Science mode where fine positioning is achieved
and scientific instruments are reporting readings.

The AOCS is expected to handle the mode transition errors
(such as timeouts), the control algorithm related errors (such as
attitude computation errors) and the unit errors (including all
errors related to failures of redundant units, loss of accuracy,
invalid data, etc.).

A. AOCS Modelling

In this work we are not attempting to model the complete
system although such models can be found elsewhere [9], [10].
The goal is to investigate the applicability of the method and
the tool in the context of a realistic system. We focus on the
modal and fault tolerance aspects of the system and investigate
the Mode/FT Views modelling technique in the context of the
AOCS case study. In particular, we want to understand the
benefits and possible drawbacks of the method, define the level
of abstraction at which modelling Mode/FT is most fitting.

As was mentioned in section II, the process of modelling
in Event-B is based on the stepwise refinement of the models.
We start with an abstract specification and create more detailed
models proving each time their correctness and the refinement
relation. During the modelling of the AOCS we have produced
6 machines (Event-B models of behaviour) and 6 views
(Fig. 1). In the first two Event-B models M0 and M1 we define
the process of system undergoing reconfiguration and trying
to progress through modes. In M2 we add units and mode
properties, we verify that the current unit states correspond
to the required mode configuration. In M3 we model errors,
unit redundancy, and verify that the units required for the
mode configuration are always available. The PLI model is
an instantiation of the M3 showing the modal behaviour of a
specific unit (payload instrument) in presence of errors. M4
finalises the modelling by showing that the required scenario
of the autonomous mode switching agrees with the unit and
mode management.

1) M0 model and its two modal views: In the abstract model
we introduce the main aspect of the AOCS system that is the
system-level mode management. To represent the modes we
define a set of constants MODES ⊂ N. We know that the
autonomous scenario of the AOCS is sequential and arrange
modes into a sequence (formally a strict partial order). At this
abstraction level, we only define the initial mode OFF = 0.

The AOCS system is always either in a stable mode or
being reconfigured. The variable currentMode defines the
last stable mode, and targetMode defines the target mode
of reconfiguration. When currentMode = targetMode, the
system is considered to be in a stable mode. There are two
events stable and reconf as shown on Snippet 1.

The first view of the system is shown on Fig. 2. On the
view, each mode is mapped to the event with the corresponding
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Fig. 1. Development diagram of the AOCS modelling

Fig. 2. The first reconfiguration view

name in the model. This is the simplest one-to-one mapping
at this level, although, generally, it is allowed to associate
several events with a mode and even have the same event
linked with several modes. Each event is mapped to the
corresponding mode as well as to its outgoing transition.
When the system is in the mode Stable, its assumption must
hold, that is the AOCS target mode must be equal to the
current mode. When the target is set to a different mode,
the system switches to the Reconfiguration mode. It stays
in this mode until the reconfiguration completes. Note how
the Reconfiguration mode does not guarantee to preserve the
initial current and target values. During the reconfiguration the

Snippet 1 The abstract model M0
variables currentMode targetMode
invariant
inv1 : currentMode ∈ MODE
inv2 : targetMode ∈ MODE

events
Initialisation

act1 : currentMode := OFF
act2 : targetMode := OFF

event stable =̂

any newMode
where
grd1 : currentMode = targetMode
grd2 : newMode ∈ MODE

then
act1 : targetMode := newMode

event reconf =̂

any newTargetMode newCurrentMode
where
grd1 : currentMode 6= targetMode
grd2 : newTargetMode ∈ MODE
grd3 : newCurrentMode ∈ MODE

then
act1 : currentMode := newCurrentMode
act2 : targetMode := newTargetMode

end

Fig. 3. The first modal view

system might decide to change its target mode and downgrade
to one of lower modes. The corresponding model events
have non-deterministic assignments: the event stable may
assign any value to the variable targetMode thus initiating
a reconfiguration, and the event reconf non-deterministically
assigns to both currentMode and targetMode. Such non-
deterministic abstraction allows us to map a single event to
multiple modes and transitions and thus be flexible with the
abstract modelling. The more deterministic behaviour will be
defined via refinement.

Another view on the same model (Fig. 3) shows the
partitioning of the AOCS modes into two subsets: Safe and
Science . Although the view is different it still characterises the
same model though from a new angle. The perspective of the
view is defined by the assumption and guarantee predicates.
We partitioned the set MODES into two parts - one represents
the preliminary stage of the AOCS operation (initiation of



fine positioning), the other depicts the stage when the AOCS
performs the collection of scientific data using its payload
instrument.

Although the model is abstract, the graphical views already
convey some important properties of the system. One of the
views shows two distinct phases of the AOCS operation - with
and without the payload involved. The second view makes a
distinction between the stable and reconfiguration modes. In
formal terms, there is a proof that the abstract model contains
phenomena described by the views. These phenomena would
be preserved and developed during the refinement process. In
fact, even at the level of the most detailed Event-B model we
are able to observe the mode switches described by the views
of the abstract model.

The formal link between the views and the model is
achieved by generating a number of proof obligations by the
tool. These are machine checked and at this step are discharged
automatically.

2) M1 model with a refined view: In the first refinement step
we refine the two abstract events with the guards that add de-
terminism to the system behaviour. We restrict the system safe
states by imposing an invariant and adding appropriate guards
to ensure that the system can only initiate the reconfiguration
to the next advanced mode or one of the lower modes. Hence,
the system cannot directly switch from Off to Science jumping
over the Safe mode as it would break the invariant (Snippet 2).
During reconfiguration the system may decide to change the
target mode to downgrade. In such case we consider the system
to achieve the previously desired mode and start downgrade
atomically. This is to ensure that the system does not arrive
at a stable mode if an error forbidding that mode is detected.

Snippet 2 Extended model M1
invariant
inv1 : currentMode = targetMode ∨

currentMode + 1 = targetMode ∨
targetMode < currentMode

events
event stable =̂ extends stable

where
grd3 : newMode = currentMode ∨

newMode < currentMode ∨
newMode = currentMode + 1

event reconf =̂ extends reconf
where
grd4 : (newTargetMode = targetMode ∧

newCurrentMode = currentMode) ∨
(newTargetMode < targetMode ∧
newCurrentMode = targetMode) ∨
(newTargetMode = targetMode ∧
newCurrentMode = targetMode)

end

The reconfiguration view on this model (Fig. 4) splits the
Reconfiguration mode into two: Advance and Downgrade. On
the diagram we emphasize that the Downgrade mode is a
recovery activity engaged as a consequence of some erroneous
action shown by a bold arrow. The Downgrade recovery
always leads to the Stable mode (a bold transition starting with

Fig. 4. The second reconfiguration view

a diamond) and there is no transition to the Advance mode.
Both Advance and Downgrade modes, as well as outgoing
transitions, refer to the reconf event. The diagram embodies
the additional modal properties of the system that are not easy
to manually encode as Event-B safety properties.

Let us consider one of the proof obligations showing the
link between mode guarantees and the corresponding event
actions:

I(v) ∧A(v) ∧H(v) ∧ S(v, v′)⇒
G(v, v′) ∨A1(v′) ∨ ...An(v′) (EVT G)

Each event within a mode must satisfy the mode guarantee
upon action. If the same event is also associated with the out-
going transitions then the goal would include the assumptions
of the target modes. Thus, the event must either preserve the
system functionality in the current mode or correctly switch to
another mode. For example, mode Downgrade and its outgoing
transition into Stable are associated with the event reconf,
and hence the proof obligation:

inv1 ∧ADowngrade ∧ grd1 ∧ grd4 ∧ act1 ∧ act2⇒
GDowngrade ∨AStable

which after automatic substitutions and simplifications by the



Rodin provers looks as the following:

currentMode 6= targetMode

(newTargetMode = targetMode

∧ newCurrentMode = currentMode)
∨ (newTargetMode < targetMode

∧ newCurrentMode = targetMode)
∨ (newTargetMode = targetMode

∧ newCurrentMode = targetMode)
targetMode < currentMode

`
newCurrentMode = newTargetMode∨
newTargetMode < newCurrentMode

There are also other proof obligations that formally show
the consistency with the model (see the full list at [7]). All of
them are discharged automatically.

3) M2 model: This refinement step is not associated with a
view. In this model we extend the abstract mode management
with the notion of unit management. We declare a set UNIT
that represents hardware units of the AOCS. Constant function
FUnitConf ∈MODE × UNIT → N defines the mapping
from modes into unit states. We track the current states of the
units in the variable unitStates. For the sake of simplicity, a
zero value corresponds to a switched-off state of a unit.

The stabilisation part of the reconf event (when
newCurrentMode = targetMode) is atomically refined into
the unit reconfiguration process implemented by two events:
unitReconf and reconfFinish. The rest of reconf is left
non-deterministic for further refinements. The property we
verify for this model state that our units have to be in a
particular configuration when the overall system is in a stable
mode (inv2 at Snippet 3).

4) M3 model: So far the model represented an ide-
alised system free from adverse interference from the en-
vironment. At this level we introduce errors and unit
redundancy to mask these errors. As specified for the
AOCS system, each unit has a redundant spare which is
enabled when an error in the current unit is detected.
We abstractly represent the errors by a set of constants
ERROR = {NoError, UnitError, AttitudeError} and a
variable error that we non-deterministically assign in one of
new events, this abstractly represents a source of errors in
the environment. Variable units returns a number of available
units of a certain kind. Our system initially has two units of
each kind. The new variables and invariants are shown on
Snippet 4.
inv4 states that the units necessary for the target mode are

always available. inv5 and inv6 ensure that non-operating
units cannot produce errors. inv7 requires the target mode to
be less or equal to the maximum mode possible under current
units availability. This is equivalent to inv4, and is used to
simplify proofs and FT degradation view (see next section).

Formal definition of FMaximumMode is given on Snip-
pet 5. According to axm2, for all modes lesser or equal to the

Snippet 3 M2 with unit reconfiguration
variables unitStates currentMode targetMode
invariant
inv1 : unitStates ∈ UNIT → N
inv2 : currentMode = targetMode⇒ (∀a ·a ∈ UNIT ⇒

unitStates(a) = FUnitConf (currentMode 7→ a))
inv3 : ∀unit ·unit ∈ UNIT ∧ unitStates(unit) ∈

ran((MODE × {unit}) C FUnitConf )
events
Initialisation

act3 : unitStates := UNIT × {0}
event stable =̂ extends stable

event reconf =̂ refines reconf
any newCurrentMode newTargetMode
where
grd1 : currentMode 6= targetMode
grd2 : newTargetMode ∈ MODE
grd3 : newCurrentMode ∈ MODE
grd4 : (newTargetMode = targetMode ∧

newCurrentMode = currentMode) ∨
(newTargetMode < targetMode ∧
newCurrentMode = targetMode)

then
act1 : currentMode := newCurrentMode
act2 : targetMode := newTargetMode

event unitReconf =̂
any unit
where
grd1 : currentMode 6= targetMode
grd2 : unit ∈ UNIT
grd3 : unitStates(unit) 6=

FUnitConf (targetMode 7→ unit)
then
act1 : unitStates(unit) :=

FUnitConf (targetMode 7→ unit)
event reconfFinish =̂ refines reconf

where
grd1 : currentMode 6= targetMode
grd2 : ∀unit ·unit ∈ UNIT ∧ unitStates(unit) =

FUnitConf (targetMode 7→ unit)
with
newTargetMode : newTargetMode = targetMode
newCurrentMode : newCurrentMode = targetMode

then
act1 : currentMode := targetMode

end

Snippet 4 Variables and properties of M3
variables error units erroneousUnit
invariant
inv1 : error ∈ ERROR
inv2 : units ∈ UNIT →{0 , 1 , 2}
inv3 : erroneousUnit ∈ UNIT
inv4 : ∀a ·a ∈ UNIT ∧

FUnitConf (targetMode 7→ a) > 0 ⇒ units(a) > 0
inv5 : error = UnitError ⇒ units(erroneousUnit) > 0 ∧

unitStates(erroneousUnit) > 0
inv6 : ∀a ·a ∈ UNIT ∧ unitStates(a) = 0 ⇒

(error 6= UnitError) ∨ (erroneousUnit 6= a)
inv7 : targetMode ≤ FMaximumMode(units)

end



maximal the required units must be available, and there exists
a unit which is required for the next mode but is not available.
axm3 is a helper axiom used for proofs regarding inv4 and
inv7.

Snippet 5 Axioms necessary for M3
axioms
axm1 : FMaximumMode ∈ (UNIT → N)→MODE
axm2 : ∀x ,mode ·x ∈ UNIT → N ∧mode ∈ MODE ⇒

(FMaximumMode(x ) = mode⇔
(∀m, u ·m ∈ MODE ∧m 6 mode ∧ u ∈ UNIT ∧

FUnitConf (m 7→ u) > 0 ⇒ x (u) > 0 ) ∧
((mode < MAX MODE ∧ ∃u ·u ∈ UNIT ∧

FUnitConf (mode+1 7→ u) > 0 ∧x (u) = 0 )∨
mode = MAX MODE))

axm3 : ∀x ,mode ·x ∈ UNIT → N ∧mode ∈ MODE ⇒
(mode ≤ FMaximumMode(x )⇔

(∀u ·u ∈ UNIT ∧FUnitConf (mode 7→ u) > 0⇒
x (u) > 0 ))

An attitude error is easily traceable in the model, the only
reaction of the system is the degradation according to the rules
provided in requirements. To trace that, we create a number
of constant functions:

FTransitionNewTarget ,FFdirNewTarget ,
FStableAttitudeNewTarget ∈ MODE → MODE

These return the new target mode for a given current target of
reconfiguration. We distinguish three cases: an error during the
advance, an error during the downgrade, and an attitude error
during the stable mode accordingly. However, the reaction of
the system to the unit errors is more complex. Firstly, the
system does not change the mode if there is a spare unit
available. It disables the erroneous unit and enables the spare
one. In case a failure occurs in the only remaining unit, the
system marks that the units of this kind are not available and
degrades to a previous (less advanced) mode in which this
kind of unit is not required.

We have a set of events covering all the cases of error
handling (we omit the details for brevity):

• redundantRecovery
• attitudeRecoveryDuringStable refines stable
• attitudeRecoveryDuringAdvance refines reconf
• attitudeRecoveryDuringDowngrade refines reconf
• unitRecoveryDuringStable refines stable
• unitRecoveryDuringAdvance refines reconf
• unitRecoveryDuringReconf refines reconf (this one

is for downgrade)

The function FMaximumMode is used in the unit recov-
ery events to obtain a correct mode. The attitude recovery
events set the new target mode according to the constant
functions defined above. These do not contradict the invariants
inv4 and inv7 as the values of the functions are always less
than their arguments, and the units in a lesser mode are always
available in absence of unit errors. The events representing the
reactions of the system to the unit errors have the following

in their guards:

newMode ≤
FMaximumMode(units C− {erroneousUnit 7→ 0})

where erroneousUnit contains the failed unit. The guard
ensures that the units required by the target mode are available.

Note that on this level we abstractly define attitude and
unit errors and recoveries, but do not specify exact units and
transitions.

5) M4 and an autonomous reconfiguration scenario: The
next model instantiates M3 with specific units, configurations,
and mode transitions according to the specified AOCS sequen-
tial scenario which respects the unit management rules. The
purpose of this step is to check the specific transition scenario
against the required abstract behaviour, mode diagram, and a
view of degraded modes.

On this level, we define the other five modes of the AOCS
(OFF mode is defined in M0) and seven units with their
possible states. Also there are a number of axioms defined
for the specific configurations given by the requirements. For
instance, in the Preparation mode the payload instrument must
be in the Standby unit state:

FUnitConf(PREPARATION 7→ PLI) = PliStandby

We instantiate the abstract attitude recovery transition func-
tions declared on the previous step with specific values, e.g.:

FTransitionNewTarget(PREPARATION) = SAFE

The modal view on the system contains six modes (Fig. 5).
The three modes Off, Standby and Safe refine the Safe mode of
the first modal diagram (Fig. 3), the other three modes refine
Science. Such refinement relation is shown by proving REF A
and REF G obligations [7]. The assumptions and guarantees
are of a similar form to those on the first modal view (e.g.
currentMode = STANDBY ) and are easily proved by
provers:

SSafe = {OFF, STANDBY, SAFE}
currentMode ∈ SSafe (REF A)
`
currentMode = OFF ∨ currentMode = STANDBY ∨
currentMode = SAFE

The mapping to events is significantly large because of the
higher number of events representing different functional and
fault tolerance behaviour. The transitions are mapped to those
events which change the value of currentMode as the result
of reconfiguration:
• Advance:
reconfFinish
attitudeRecoveryDuringAdvance
unitRecoveryDuringAdvance

• Downgrade:
reconfFinish



attitudeRecoveryDuringDowngrade
unitRecoveryDuringReconf

The downgrade transitions leading to Off mode are mapped
to a single event reconfFinish. This is due to inability of
the system to downgrade further during reboot.

Off

Standby

Nominal

Safe

Science

Preparation

Back to safe

Reboot

Fig. 5. The second modal view

A specific view on a model is one way to communicate
design decision taken in a formal model to domain experts.
We build another view to explain when the system switches
into a degraded mode. If a unit fails, the system can no longer
be in certain modes but it still does not signify a failure at
the global level. We call this a graceful degradation of the
behaviour (Fig. 6).

Each mode on the diagram represents the maximum (ac-
cording to the ordering sequence defined above) mode of
AOCS that is reachable with the currently available set of
units. Initially, satisfying its purpose, the maximum mode is
the Science mode. This is the most desirable reachable mode
after the start. After some time, both payload instruments (PLI)
can fail, and the maximum mode for the system becomes
the Nominal. If the steering devices fail, the system cannot
advance beyond the Safe mode. Finally, when any kind of
the tracking devices fail, the system reboots and stays in the
Standby mode.

The assumption of each mode in this view specifies the
availability of units, i.e. operating conditions. The guarantee
states the maximum mode in which the system can be during
operation, i.e. specifies the functionality under given assump-
tion. For example, A/G of the Nominal mode is the following:

Fig. 6. The degraded modes view

• Assumption: all units except PLI are available:

units(PLI) = 0∧
(∀u·u ∈ UNIT \ {PLI} ∧ units(u) > 0)

• Guarantee: the system can progress up to the Nominal
mode:

FMaximumMode(units′) = NOMINAL

The transitions at Fig. 6 are mapped to the
events which change the availability status of units
(variable units): unitRecoveryDuringStable,
unitRecoveryDuringReconf,
unitRecoveryDuringAdvance.

6) PLI unit instantiation: At the last refinement step we
implement an important requirement regarding the availability
of units and their redundant counterparts. We explicitly tell
how a single unit and its spare interact. In other words, the
behaviour of a system when it detects a unit error and has
to switch to its spare. Event-B model elements relevant to
such interaction are scattered all over the model. To obtain a
clean picture of this aspect of the model, we instantiate a unit
refining error handling events, and create a view on a single
unit (PLI) and its spare (Fig. 7).

There are three modes for a nominal PLI unit and three
more for the spare unit. A transition to the spare unit happens
upon an occurrence of a PLI error within the main unit,
and it keeps the corresponding mode for the redundant unit.
When an error is detected in the redundant unit, the PLI unit
becomes unavailable. There are neither transitions between
the Off modes, nor error originates from them - this is due



Pli main off Pli main science

Pli main standby

Pli redundant off Pli redundant science

Pli redundant standby

main PLI error

Pli not available

redundant PLI error

Fig. 7. View on the PLI unit modes and its spare

to the fact that no error can arise in a non-working unit.
The assumption/guarantees concern only the current status and
the availability of the payload. Note that the assumptions of
the modes must be consistent with the safe states defined by
the model invariants. The proof obligation named COV ER
establishes such consistency showing that the invariant implies
the disjunction of all mode assumptions. Since the assumptions
cover all possible variations of the unit statuses and availabil-
ity, it is sufficient to use the constant definitions and typing
invariants to prove such obligation.

Overall, the modelling effort resulted in 650 proof obliga-
tions of which 500 were discharged automatically. Approx-
imately 70% of proof obligations are concerned with the
Mode/FT Views consistency and Event-B link. It is important
that the percentage of interactive proofs for mode-related
theorems is within the bounds of what is expected in an
Event-B development. Clearly, the proportion of modal proof
obligations is high in this case study due to a deliberate attempt
to demonstrate in detail the Mode/FT approach. A version of
the model can be obtained from [7].

V. DISCUSSION AND LESSONS LEARNT

As the case study demonstrates, the Mode/FT Views ap-
proach requires extra proofs and therefore may affect the
platform performance and result in extra manual efforts.
On the other side, the explicitness, separation of concerns,
and potential improvement in traceability will increase the
development quality and improve the communication between
modellers and requirements engineers. Even with this medium-
scale study we have found it is worthwhile to use such
approach for modelling modal systems which need to meet
various fault tolerance requirements. In particular, tracing such
requirements to views gives a better understanding of the sys-

tem behaviour and leaves the models uncluttered. Additional
POs often point to the inconsistencies in the models which
otherwise would be difficult to cover using safety invariants.

While most of the proof obligations can be proved auto-
matically or require little effort, some may need significant
time to prove. The latter concern the whole set of modes
or events, or many-to-many mappings between modes and
events. For instance, the PO COV ER has a disjunction of
all mode assumptions in its goal. This can be comprehensible
by a user, but automatic provers practically never can prove
it without manual efforts. Other examples are EV T A and
ENBL proof obligations which also have disjunctions of
mode assumptions and event guards in their goals correspond-
ingly. FT views give more benefits when targeting features
orthogonal to the behavioural part of the formal model, such
as two modal views and a view of degraded modes in the case
study. On the views, most of the events are mapped to each
mode and therefore contribute to the level of complexity of
the mentioned proof obligations.

However, the views orthogonality to the main, functional
Event-B models and to each other gives extra flexibility in
choosing the perspective of the view on the model. Chang-
ing the assumption/guarantee pairs leads to a different view
and provides with a powerful tool for covering different
behavioural aspects of the system. As we showed in the case
study, a single model can have a number of views, and each
view can describe a different aspect of modal behaviour or
different FT features.

One of the specific views that we produced as a result of
our experimental development is dedicated to degraded modes
of the system. It is not only beneficial but also essential to
separate different viewpoints to avoid ”multiplication” of the
diagram elements leading to exponential growth of a single
model.

Note that the ability to formally develop several views
has great potentials for verifying complex system properties
capturing consistency of these views in the situations where
these views overlap. We did not investigate this topic in the
AOCS case study in detail - these issues will be further
addressed in our future work.

Another interesting benefit of using the FT/Mode Views
is the ability to use proof obligations as a means to check
compliance of the static definitions to the required abstract
behaviour. In the case study, we firstly modelled the required
reconfiguration behaviour of the system as a series of abstract
unit switches restricted by rules. The actual rules and scenario
of reconfiguration (modes and units mappings) have been
defined later and proved to satisfy the abstract behaviour by
representing the former in views. To achieve that using the
traditional Event-B refinement, one would need to create extra
events for each mode and unit transition, thus complicating
further refinement steps.

The views developed in the case study are equivalent to
informal diagrams used as the requirements documents for the
AOCS.



VI. RELATED WORK

In [11] Hall shares his experience in using formal techniques
in industrial projects. In particular, he discusses the importance
of using specific methods and notations for specifying certain
aspects of the systems under development. Also related to
our work are the characteristics of the specification notations
Hall defines as being the most important for users: clarity and
expressiveness, these are the properties we provide for the
users of the FT Views.

Separation of concerns has been always of a high impor-
tance to the computer science research. The recent standard
on architectural descriptions [1] puts such separation in a
framework. The concern is a framework term used for the
set of properties and aspects that one of the stakeholders is
interested to see in the system. The examples of concerns are
the performance, safety, fault-tolerance, real-time – related,
etc. A more specific description of the concern comprises
a viewpoint on the system and is typically supported by
domain-specific tools and notations. A view is an instance of
a viewpoint within a project on a specific (sub)system. The
existence of multiple views on the problem/system gives rise
to the consistency and parallel refinement issues. A particular
example of verifying model transformations that involve multi-
ple views is presented in [12]. The paper presents a technique
for proving the behaviour preservation of the overall model
transformation in presence of the sub-transformations on the
individual views that are not behaviour preserving. The views
chosen as an example are Object-Z as a static part with its data
refinement and a CSP process view for dynamic behaviour.

The work presented in this paper is based on our previous
work on formal specification of modal systems [6], [8] where
we provided the theory of modes and a sound link to the
state-based formalisms, exemplified by Event-B. Other related
works include [13] where the concept of mode is intro-
duced into the component behaviour specification using the
formalism of extended behaviour protocols. The component
behavioural modes are then used on the system level to model
the behaviour of the product lines. The approach supports
formal specification of modes and transitions, and verification
by model-checking. Another paper on introducing modes on
the architectural level [14] talks about modes as architectural
constraints over subsystem configurations. A system mode
is linked with a system subtask and is a composition of
component modes. The authors introduce the notion of modes

to the Darwin architectural language and give an example from
the automotive domain.
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