
Edinburgh, Scotland | October 17 – 21, 2021

D02
Modern Db2 job automation
- maintenance with Ansible -

Markus Fraune, ITGAIN

Agenda

• Ansible and AWX basics
• Getting Db2 into the game
• Backup Sample
• Pros and Cons / where to use

Infrastructure as Code (IaC) (1|2)

• Manage and provision systems through machine-readable
definition files with automatic pipelines, rather than physical
hardware configuration or interactive tools
• For virtual AND bare-metal servers including configuration

resources
• Mostly stored in a version control system (svn, gitlab, github,

git…)
• declarative definitions and scripts, rather than manual

processes
• Two approaches: declarative (functional)

vs. imperative (procedural)

Infrastructure as Code (IaC) (2|2)

Tool Released by Method Approach Written in Comments

Chef Chef (2009) Pull Declarative and
imperative

Ruby

Otter Inedo Push Declarative and
imperative

- Windows
oriented

Puppet Puppet (2005) Pull Declarative and
imperative

C++, Clojure,
Ruby

SaltStack SaltStack Push and Pull Declarative and
imperative

Python

CFEngine Northern.tech Pull Declarative C

Terraform HashiCorp
(2014)

Push Declarative Go

Ansible /
Ansible Tower

Rad Hat (2012) Push Declarative and
imperative

Python

Configuration as Code (CaC)

• Sometimes used as a synonym for IaC or as a part of it (they
overlap at some point)
• “only” for application configuration data
• Separate from IaC to be able to deploy config without new

software (has its own pipelines)
• Uses its own repositories and branches
• Goal is to keep it simple and make configuration resistant going

from development to production
• Tools (example): Ansible, Consul, Terraform, Vagrant, Packer,

most IaC Tools

History of Ansible

• 2012: Michael DeHaan started developing Ansible tool
• 2013: Company Ansible Inc. (originally AnsibleWorks, Inc.)

was founded by Michael DeHaan, Timothy Gerla and Saïd
Ziouani
• 2015: Red Hat acquired Ansible
• 2016: First AnsibleFest (annual conference)
• 2017: AWX (Upstream Project for Ansible Tower) got Open

Source

Ansible Nodes

• Control Node
• machine where Ansible is installed and command like ansible or

ansible-playbook can be run on (laptop, shared desktop, server)
• Python installation needed
• Windows is not supported
• Can have more than one

• Managed Node
• Systems that will be managed by ansible
• Mostly called hosts
• Ansible is not installed on a managed host

Ansible Inventory (1|2)

• One (or more) yaml files that contain lists of hosts
• Sometimes called the “hostfile”
• Contains information like IP addresses of managed hosts
• Nodes can be organized in (nested) groups
• Default Groups all and ungrouped (hosts with no other

group than all)
• Hosts can and will be in more than one group
• Typically hosts grouped by what (database, webservice),

where (local region, datacenter) and when (stages like dev,
prod, test)

Ansible Inventory (2|2)
all:
hosts:
nogroup.example.com:

children:
webservers:
hosts:
foo.example.com:
bar.example.com:

dbservers:
hosts:
dbone.example.com:
dbtwo.example.com:
dbthree.example.com:

east:
hosts:
foo.example.com:
dbone.example.com:
dbtwo.example.com:

west:
hosts:
bar.example.com:
dbthree.example.com:

prod:
children:
east:

test:
children:
west:

Ansible Variables

• Can be placed in almost every stage of ansible
• variables will be overridden from next “deeper” part (the

last listed variable will override all others)
• Part of that order:

• Role Defaults
• Inventory
• Group Vars
• Host Vars
• Playbook Vars
• Role Vars
• Extra vars (when running ansible or ansible-playbook)
(full list on next slide (hidden))

Ansible Inventory Vars

atlanta:
hosts:
host1:
db2_port: 50001
db2_max_connections: 100

host2:
db2_port: 50002
db2_max_connections: 250

Ansible Group Vars (inventory file)

atlanta:
hosts:
host1:
host2:

vars:
db2_port: 50003
db2_max_connections: 500

Ansible Group Vars (<group>.yml)

All.yml
db2_port: 50000
db2_max_connections: 100

Atlanta.yml
db2_port: 50003
db2_max_connections: 500

Ansible Host Vars (dbone.example.com.yml)

db2_svcename: 50000
db2_max_connections: 100
db2_database_name: SAMPLE
db2_admin_user: db2adm1
db2_day_of_backup: 1
db2_hour_of_backup: 18

Ansible Playbook

• Repeatable and re-usable ”plays” to execute specific tasks
to a set of hosts
• Can be used for simple configuration management or

complex environment orchestration
• Rule of thumb: if a task is going to be executed more than

once it will fit perfectly in a playbook
• Can include other playbooks and/or roles
• No difference in result if executed for the first or 10time:

result must be the same (Idempotency)

Ansible Modules

• Discrete unit of code that can be executed from cli or wihtin a
paybook/role task
• Gets executed on the managed node, return values will be

collected
• Sometimes referred as „task plugins“ or „library plugins“
• Commonly used modules:

• command
• shell
• service
• copy
• Template

https://docs.ansible.com/ansible/2.9/modules/modules_by_category.html

Ansible Modules Examples

- name: restart webserver
service:
name: httpd
state: restarted

- name: reboot the servers
command: /sbin/reboot -t now

Ansible Plugins

• Discrete pieces of code that extend Ansible‘s core
functionality
• Are usually executed on the control node
• Used for

• Connecting to an inventory
• Logging output
• Switch to another user (become)

Ansible Roles

• Group a set of tasks, vars, template, files etc. to a role
• Has a known file structure
• Easily re-usable and share-able
• Can’t be executed without a play
• Examples for roles:

• webserver
• db2server
• fileserver
• db2_backup_scripts

• A play for a given set of hosts can include several roles

Ansible Roles Directory Structure
playbooks

site.yml

webservers.yml

fooservers.yml

roles/

common/

tasks/

handlers/

library/

files/

templates/

vars/

defaults/

meta/

webservers/

tasks/

defaults/

meta/

• Minimum is one directory per
role

• Not used directories can be
omitted

• Within every directory a
main.yml will be called per
default

• Tasks/main.yml is the default
task file to be executed
first (if not explicitly
specified)

Ansible Architecture (Basic)

</>

Ansible Control Node

Inventory API

PluginsModules

Hosts

Playbooks

Users

Roles

AWX Basics

• Open Source Community Project (The AWX Project)
https://github.com/ansible/awx/
• Upstream for Ansible Tower (Enterprise Offering by Red

Hat)
• Projects
• Job Templates
• Job Scheduler
• Workflows

AWX Dashboard

AWX Job Templates

AWX Job Templates - Survey

AWX Job Scheduler - Add Schedule

AWX Job Scheduler - thinks to know

• „No“ limit in number of schedules for template
• Schedule sticks to a template, can’t start more than one

template
• A schedule starts the template with its predefined settings,

no prompt or extra variables can be specified
• Mostly you create a template “for” a schedule, like a

template to backup database on Monday with a schedule
that starts this template on Mondays
• Jobs may start later than given times of the schedule

because of load of AWX System

AWX Workflows

Ansible and Db2 - What do I need?

• Ansible Development Environment
• System / Container running Ansible (Control Node)
• System / Container to test your playbooks on (like db2 container,

“empty” Alpine Linux container) -> Can be role / playbooks as
well

• Repository to store and version your files (e.g. gitlab,
github…)
• Running AWX K8S Environment (e.g. with minikube in a

VM)
• SSH Access from four Control Node and AWX system to

Managed Nodes
• Code Editor with a linter (e.g. Visual Studio Code)

Ansible and Db2 - basic host file (db2srv1.mydomain.org)

db2_app_user: db2_tech_u

db2_inst_user: db2inst1

db2_inst_con: server_encrypt

db2_dbname: proddb

db2_db_path: "/db2/{{ db2_inst_user }}/{{ db2_db_name }}/dbpath"

db2_data_path: "/db2/{{ db2_inst_user }}/{{ db2_db_name }}/data"

db2_db_pagesize: 32

Ansible and Db2 - Server Provisioning

Add db2 app users to System and add software
dependencies
- name: Add user '{{ db2_app_user }}' with a bash, groups 'admins’ and 'developers'

ansible.builtin.user:
name: "{{ db2_app_user }}"
home: "/db2/homes/{{ db2_app_user }}"
shell: /bin/bash
groups: admins,developers
append: yes

- name: Upgrade all packages on the Server
apt: upgrade=yes

- name: Install the latest versions of each component
apt:

name:
- gcc
- python

state: latest

Ansible and Db2 - Db2 Provisioning (1|3)

• Bring db2 software package onto the system
- name: Download db2_install_package

get_url:

url: http://software_repo.mydomain.org/db2/luw/11.5.6/db2_install_package.tar.gz

dest: /tmp/db2_install_package.tar.gz

• Unarchive db2 software package
- name: Unarchive a file that is already on the remote machine

ansible.builtin.unarchive:

src: /tmp/db2_install_package.tar.gz

dest: /tmp/db2_install_package

remote_src: yes

Ansible and Db2 - Db2 Provisioning (2|3)

• Install Db2
- name: Copy Response File

ansible.builtin.template:

src: respone.file.template

dest: /tmp/response.file

- name: Install Db2 Server

command: /tmp/db2_install_package/install/db2setup -r /tmp/response.file

• Create Db2 Instance
- name: Create Db2 instance {{db2_inst_user }}

command: /opt/…/instance/db2icrt -a {{ db2_inst_con }} -u db2fenc1 {{db2_inst_user }}

Ansible and Db2 - Db2 Provisioning (3|3)

• Create Database
- name: create database {{ db2_dbname }} in instance {{ db2_inst_user }}

become: true

become_method: su

become_user: "{{ db2_inst_user }}"

shell: bash -lci 'db2 create database {{ db2_dbname }} on {{ db2_data_path }} dbpath on
{{ db2_db_path }} page size {{ db2_db_pagesize }}k '

• Grant App User
- name: grant App user

become: true

become_method: su

become_user: "{{ db2_inst_user }}"

shell: bash -lci 'db2 +o connect to {{ db2_dbname }} && db2 "grant connect, createtab,
dataccess on database to user {{ db2_app_user }}"'

Ansible and Db2 - Role Sample SQL (1|4)

main.yml - get all local installations
- name: get local db2 installations
shell: db2ls |awk '/V/ {print $1}’
register: db2_install_path_list
changed_when: "db2_install_path_list.rc < 0"

- name: debug output
debug:
msg: "myscript has error: {{ db2_install_path_list.stderr }}"

when: db2_install_path_list.stderr | length > 0
failed_when: db2_install_path_list.stderr | length > 0

- name: include db2_get_instances
include_tasks: db2_get_instances.yml
with_items: "{{ db2_install_path_list.stdout_lines }}"

Ansible and Db2 - Role Sample SQL (2|4)

db2_get_instances.yml
- name: get local instances for path {{ item }}
shell: "{{ item }}/instance/db2ilist"
register: db2_instance_list
changed_when: "db2_instance_list.rc < 0"

- name: debug output
debug:
msg: "myscript has error: {{ db2_instance_list.stderr }}"

when: db2_instance_list.stderr | length > 0
failed_when: db2_instance_list.stderr | length > 0

- name: include db2_get_databases
include_tasks: db2_get_databases.yml
with_items: "{{ db2_instance_list.stdout_lines }}"

Ansible and Db2 - Role Sample SQL (3|4)
db2_get_databases.yml
- name: set fact db2 instance vara

ansible.builtin.set_fact:

db2_instance: "{{ item }}"

- name: get local databases for instance {{ item }}

become: true

become_method: su

become_user: "{{ db2_instance }}"

shell: bash -lci 'db2 list db directory|awk -v RS= '/Indirect/' grep "Database name"|cut -d "=" -f 2|sort|uniq'

register: db2_database_list

changed_when: "db2_database_list.rc < 0"

- name: debug output

debug:

msg: "myscript has error: {{ db2_database_list.stderr }}"

when: db2_database_list.rc > 0

failed_when: db2_database_list.rc > 0

- name: include db2_sample_select

include_tasks: db2_sample_select.yml

with_items: "{{ db2_database_list.stdout_lines }}"

Ansible and Db2 - Role Sample SQL (4|4)
db2_sample_select.yml
- name: sample select for database {{ item }} at instance {{ db2_instance }}

become: true
become_method: su
become_user: "{{ db2_instance }}"
shell: bash -lci 'db2 +o connect to {{ item }} && db2 -v "select * from

syscat.tables" '
register: sql_output
changed_when: "sql_output.rc < 0"
failed_when: sql_output.rc > 4

- name: debug output
debug:
msg: "mysql has a non zero rc ({{ sql_output.rc }}): {{ sql_output.stdout }}"

when: sql_output.rc > 0
failed_when: sql_output.rc > 0

Ansible and Db2 - Role Backup (1|5)

• In comparison to sample sql role:
• Added defaults/main.yml for default variables
• Include in “db2_get_databases.yml” is now db2_backup and not

“db2_sample_select”

defaults/main.yml
backup_every_hours: 1

Ansible and Db2 - Role Backup (2|5)

- name: check if database is active
become: true
become_method: su
become_user: "{{ db2_instance }}"
shell: bash -lci 'db2 list active databases | grep -i {{

item }}’
register: list_active_db_output
changed_when: "list_active_db_output.rc < 0"
failed_when: "list_active_db_output.rc > 3"

- name: debug list active db output
debug:
msg: "List Active datasbases showed {{ item }} as active

database, no offline backup possible"
when: "list_active_db_output.rc == 0"

Ansible and Db2 - Role Backup (3|5)
- name: check if last db backup timestamp is older than {{ backup_every_hours }}
hours

become: true
become_method: su
become_user: "{{ db2_instance }}"
shell: bash -lci 'db2 +o connect to {{ item }} && db2 -x "select

timestamp(LAST_BACKUP) as last_backup from table(mon_get_database(-1)) as t where
LAST_BACKUP >= current timestamp - {{ backup_every_hours }} hours”’

register: backup_old_enough
changed_when: "backup_old_enough.rc < 0"
failed_when: "backup_old_enough.rc > 3"
when: "list_active_db_output.rc == 1"

- name: debug check last backup ts
debug:
msg: "Last Backup TS of {{ item }} is not old enough - {{

backup_old_enough.stdout }}"
when: backup_old_enough is not skipped and "backup_old_enough.rc == 0"

Ansible and Db2 - Role Backup (4|5)
- name: block backup database {{ item }} at instance {{ db2_instance }}

become: true

become_method: su

become_user: "{{ db2_instance }}"

block:

- name: try to backup {{ item }} at instance {{ db2_instance }}

shell: bash -lci 'db2 -v backup db {{ item }} to /dev/null’

register: backup_output

changed_when: "backup_output.rc == 0"
failed_when: "backup_output.rc > 3"

when: "list_active_db_output.rc == 1 and backup_old_enough.rc == 1"

ignore_errors: yes

rescue:

- name: print out backup stdout

debug:

msg: "backup has a non zero rc ({{ backup_output.rc }}): {{ backup_output.stdout }}"

Ansible and Db2 - Role Backup (5|5)

- name: print backup output

debug:

msg: "backup was successfull. output: {{ backup_output.stdout }} "

when: backup_output is succeeded and backup_output is not skipped

Ansible and Db2 - Backup Template (1|4)

Ansible and Db2 - Backup Template (2|4)

Ansible and Db2 - Backup Template (3|4)

Ansible and Db2 - Backup Template (4|4)

Ansible and Db2 - What to use it for?

• Repeating jobs
• Repeating activities
• If you have more than 1 system you want to run jobs on
• Existing Scripts

• Deployment / Copy to managed node
• Execute via schedule on managed node
• add crontab via role to execute scripts locally

• New Tasks
• Create plays and roles for new requirements
• Enhance and reuse existing plays/tasks/roles

Ansible and Db2 - Pros / Cons

• Cons
• New / Something to learn
• Slightly higher complexity

• Pros
• Fast learning curve
• Existing scripts can be reused
• Repeatable and checked-in jobs and configuration lowers the risk

of a failure
• Easy to execute on a high number of hosts
• Shareable scripts
• Tons of pre-existing roles and plays available online

Session: D02
Speaker: Markus Fraune
Company: ITGAIN
Email Address: markus.fraune@itgain.de
Twitter: @maggusf

Please fill out your session evaluation!

