
NET-FLi: On-the-fly Compression, Archiving and
Indexing of Streaming Network Traffic

Francesco Fusco
IBM Research - Zurich

ETH Zurich
Switzerland

ffu@zurich.ibm.com

Marc Ph. Stoecklin
IBM Research - Zurich
Ecole Polytechnique

Fédérale de Lausanne (EPFL)

mtc@zurich.ibm.com

Michail Vlachos
IBM Research - Zurich

ABSTRACT
The ever-increasing number of intrusions in public and com-
mercial networks has created the need for high-speed archival
solutions that continuously store streaming network data to
enable forensic analysis and auditing. However, “turning
back the clock” for post-attack analyses is not a trivial task.
The first major challenge is that the solution has to sustain
data archiving under extremely high-speed insertion rates.
Moreover, the archives created need to be stored in a for-
mat that is compressed but still amenable to indexing. The
above requirements make general-purpose databases unsuit-
able for this task, and, thus, dedicated solutions are re-
quired.

In this paper, we describe a prototype solution that satis-
fies all requirements for high-speed archival storage, index-
ing and data querying on network flow information. The
superior performance of our approach is attributed to the
on-the-fly compression and indexing scheme, which is based
on compressed bitmap principles. Typical commercial solu-
tions can currently process 20,000-60,000 flows per second.
An evaluation of our prototype implementation on current
commodity hardware using real-world traffic traces shows
its ability to sustain insertion rates ranging from 500,000 to
more than 1 million records per second. The system offers
interactive query response times that enable administrators
to perform complex analysis tasks on-the-fly. Our technique
is directly amenable to parallel execution, allowing its ap-
plication in domains that are challenged by large volumes
of historical measurement data, such as network auditing,
traffic behavior analysis and large-scale data visualization
in service provider networks.

1. INTRODUCTION
Corporate and service provider networks, financial insti-

tutions and high-security data centers are increasingly in-
terested in tools that allow them to archive network traffic
information for post-mortem analysis. Imagine for example,
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the case of an identified data breach at a financial institu-
tion where the system administrator would like to quickly
pinpoint the accessed nodes from the list of suspected IP
addresses to isolate any additional compromised nodes. A
similar scenario is encountered during the outbreak of a com-
puter worm (cf. Fig. 1), in which all network nodes being
contacted by the infected host need to be discovered to un-
derstand the propagation pattern of the worm.

Figure 1: Propagation graph of a worm epidemic
used to identify potentially compromised nodes in a
network.

To address the above cases, all inbound and outbound
traffic can be recorded in order to recreate the original breach
conditions. To limit disk consumption, most companies typ-
ically only record historical network flow data. In that way
one can still capture information, such as source and des-
tination IP addresses, ports, protocols and time, but avoid
recording the actual packet content, something that would
result in prohibitive repository sizes and also severely com-
promise user privacy. However, even with a flow-based ap-
proach, huge repositories will be accumulated over time.
Currently, a typical service provider network may exhibit
flow export rates as high as 50,000 flows per second; this
would amount to more than 8 GB of raw flow information
per hour. Therefore, even with data compression enabled,
the resulting data repository could easily reach the order of
terabytes on a yearly basis.
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General-purpose databases are not able to scale to the re-
quired high insertion rates. Even sifting through such enor-
mous databases is not trivial, particularly when interested in
identifying “needles in the haystack”. To effectively address
the above issues, two mechanisms need to be in place: i) a
low-latency data storage mechanism that will capture and
archive all streaming network information of interest, and
ii) a search mechanism over the archival data, potentially
with the help of an indexing scheme.

This work introduces NET-FLi (NETwork FLow Index),
a highly optimized solution for real-time indexing and data
retrieval in large-scale network flow repositories. By exploit-
ing the nature of network flow data, we introduce adaptive
indexing and data compression mechanisms which adapt the
principles of bitmap indexing and Locality Sensitive Hashing
(LSH). Our methodology offers real-time record processing,
with high compression rates and interactive query response
times. Both data compression and indexing are performed
on-the-fly. The low response time for data retrieval from
the repository is attributed to our indexing and selective
data-block decompression strategies.

Our solution can be utilized in the following applications:

1) Network forensics, for auditing and compliance pur-
poses. Compressed network flow archives capture digital
evidence that can be used for retrospective analysis in case
of information abuse and cyber-security attacks. We illus-
trate such an example in Fig. 1, which explores the past
connectivity graph of a potentially compromised node. Such
an analysis would require extended recursive exploration of
the inbound/outbound traffic through access of the stored
archive. Using traditional approaches such a task would re-
quire hours to complete; using our framework the task can
be completed in only a few seconds.

2) Network troubleshooting, as an indispensable tool
for system administrators and data analysts to better sup-
port network management. Consider the case of an operator
requiring a visualization of the dependencies between a set of
servers; this is a necessary step for preparing a server migra-
tion plan and requires extensive retrieval of historical traffic
usage and access patterns in one’s domain. The end-user
therefore requires fast drill-down capabilities for querying
the archive system. In addition, the fast search functional-
ities over the archival data as provided by our solution can
assist in expedient resolution of network anomalies, identi-
fication of network performance issues and bottlenecks, and
lead to better load balancing of the network.

3) Behavior analysis, with focus on traffic classification.
It is of general interest to identify the application that gen-
erated a particular network communication. This is a chal-
lenging problem because nowadays a huge amount of net-
work traffic is transported through widely used ports, such
as port 80 (e.g., Skype or torrent file transfer) [19]. Accurate
application-deciphering rules can potentially be distilled by
examining the cardinality of flows, packets and bytes ex-
changed, as recorded in the network flow records.

4) Streaming data indexing. Even though the solution
presented has been created with network data in mind, the
indexing and compression strategies that we present can also
be used for archival and search over any streaming numeri-
cal data, when high efficiency and low response time are of
essence.

Our work makes several important contributions:

• We present a unique on-the-fly solution for archiving
and indexing of network flow data based on the syn-
ergy of an alphabet-optimized bitmap index variant,
along with an online LSH-based reordering scheme to
boost the space savings of our approach even more.

• The compressed columnar approach that we propose
presents compression ratios on par with that of a typ-
ical gzip compression, with the added benefit of pro-
viding indexing functionality, and partial and selective
archival-block decompression.

• Typical data insertion rates of our approach can reach
1.2 million flow records/sec on a commodity desk-
top PC. High-bandwidth networks currently experi-
ence bursts of up to 50,000 flows/sec traffic, so our
approach offers an order of magnitude higher process-
ing rates than these required to capture all flows from
a typical network device.

• The data index achieves interactive retrieval time
while searching through gigabytes of compressed flow
repositories.

• The architecture actively exploits the parallelism of-
fered by multi-core and multi-processor systems.

In the remainder of the paper, we go into more detail on
the distinct advantages of our solution. We begin by sur-
veying related work and elementary concepts in Sections 2
and 3. Section 4 presents the overall architecture of our so-
lution. We evaluate our approach in Section 5, provide a
comprehensive case study in Section 6 and discuss limita-
tions and future work in Section 7.

2. RELATED WORK
Network forensics involves topics that need to be effi-

ciently addressed from both the network and the database
perspective. Below we review some solutions relevant to the
task at hand and, when possible, highlight the differences to
our approach:

a) Network Traffic Recording Systems [2, 5] are deployed
by financial and security agencies interested in keeping a
sliding window of the traffic, which can be replayed entirely
for post-mortem analysis. Filters for supporting on-the-fly
queries can be enabled , but interactive queries over the
archived data are not supported.

b) Data Stream Management Systems (DSMS), such as
Gigascope [12], TelegraphCQ [10], and System S [6, 34] have
been introduced to perform online queries over data streams.
The idea behind the stream database approaches is to sup-
port static queries over online data without storing the entire
stream on disk. Only the query results (i.e., data aggrega-
tions) are kept on secondary storage. Those systems usually
provide SQL-like languages augmented with stream-aware
operators. Plagemann et al. provide examples of stream
databases deployed in the context of traffic analysis [28].

c) Flow-Based Systems attempt to lift some of the limi-
tations of stream-based systems by archiving entire network
streams. Silk [16], nfdump [18] and flowtools [30] are the
most commonly used tools for storing flows. They all store
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flow records as flat files, with optional data compression us-
ing tools such as gzip, bzip2 and lzop [25]. Important short-
comings of those software suites are that: i) they do not
provide any indexing facility, and ii) the entire data set must
be scanned linearly (and decompressed) even for retrieving
only a few records. In contrast, our flow storage solution
has been designed for minimizing the amount of data to be
decompressed at query time.

Reiss et al. [29] propose a flow storage solution imple-
mented on top of Fastbit [3], a column-oriented library with
built-in support for compressed indexes when performing
queries over historical data. Contrary to NET-FLi, their
flow storage solution does not provide any compression mech-
anism for the data, which is appended uncompressed (and
unsorted) to the disk. In addition, indexes are built off-
line and in batch. NET-FLi can handle twice the incoming
flow rate with compression rates equivalent to that of gzip,
leading to 40% smaller indexes.

Distributed architectures for flow storage have also ap-
peared in MIND [22] and DipStorage [24], which distribute
flow records among different peers to decrease the response
time of multi-dimensional queries. Our work is orthogonal,
as our flow storage solution can be used as a back-end sys-
tem for distributed storage architectures.

d) Flow Aggregation Databases such as as AURORA [1]
and nTop [4] use stream-based approaches to analyze high-
speed networks and provide statistics (e.g., IP addresses
with highest usage) at different time scales (i.e., hourly,
daily, weekly, or yearly). However, unlike stream databases
which are programmable with SQL-like languages, network
aggregation databases provide a predefined set of analysis
tasks, trading flexibility for performance. In addition, they
do not offer drill-down capabilities, which are essential for
our application.

In our solution, we adopt a columnar data representation.
Related to our work are therefore column-oriented database
systems such as CStore [31], MonetDB [9] or BigTable [11].
Organizing the data in columns rather than in rows offers
several advantages: i) it provides more opportunities for
compression, ii) it allows operators to be implemented di-
rectly over the compressed data, and iii) it reduces the I/O
bandwidth for queries with high selectivity on the attributes.

In NET-FLi we introduce a specialized compressed bitmap
index variant, which we call COMPAX. Existing bitmap in-
dexes, such as Word-Aligned-Hybrid (WAH) [33] or Byte-
Aligned Bitmap Codes (BBC) [8], have been shown to offer
indexes that are many times smaller than traditional tree-
based indexing data structures [32]. Our evaluations sug-
gest that COMPAX is superior to the state-of-the-art index
WAH in terms of compression rate, indexing throughput,
and retrieval time.

3. BACKGROUND
Before we start describing our solution in detail we briefly

revisit the concept of network flow, which is essential for our
framework.

The network flow structure has been introduced in the
area of network monitoring to capture a variety of infor-
mation related to network traffic. A flow is defined as a
unidirectional sequence of network packets sharing the fol-
lowing 7-tuple key of equal values: source and destination
IP address, source and destination port, transport proto-

SrcIP SrcPort DstIP DstPort Proto

Source IP

address Source Port

Destination IP

address

Destination Port

Layer 3 protocol

(e.g., TCP, UDP)

Pkts Start Dur

flow start

time

flow duration
# packets 

exchanged in the flow

TCPflags OctsDestAS

Cumulative TCP flags

(e.g., SYN, ACK, FIN)

Source Autonomous 

System Number 

SrcAS

Destination Autono-

mous System Number 

# Bytes exchanged 

in the flow

Figure 2: Attributes that can be present in a flow
entry record

col, ingress interface, and service type. Network equipment,
such as routers, is equipped with monitors (referred to as
flow meters) that maintain statistics of the flows observed,
such as the number of bytes, packets, or TCP flags. Once
a flow is considered terminated, the statistics are exported
as a flow record to a collector device; flow records consist of
a pre-defined data structure used to represent the fixed-size
attribute fields. Over the years, different export protocols
(e.g., Netflow v5, Netflow v9, IPFIX) have been proposed.
Netflow v5, the most widely used protocol, uses 48 Bytes
(including three padding bytes) to encode 19 flow attributes
of a single flow. In Figure 2 we depict the network flow at-
tributes that we utilize in our setting, along with a simple
description of the fields.

By archiving collected flow records over time, a large repos-
itory documenting all end-to-end network communication
patterns can be created. This repository provides a valuable
source of information for many analysis tasks conducted on
a daily basis by administrators, such as the examination of
anomalous traffic patterns, forensic investigation, usage ac-
counting, or traffic engineering.

4. ARCHITECTURE
In this section, we describe our approach, discuss its inner

workings, and explain our design choices. The storage solu-
tion comprises two logical components, which are depicted
in Fig. 3:

1. The archiving backend, which compresses incoming flow
data, and

2. The compressed index, which encodes the flow informa-
tion using the COMPressed Adaptive indeX format (or
COMPAX), using a pre-specified codebook of words.

The tasks of the two components are executed on-the-fly
and in parallel, which is the reasons for the high-performance
of our solution. An additional online pre-processing step
can be executed, that reorders the flows using a variation
of a Locality Sensitive Hashing technique, with the purpose
of achieving better compression in both the archived data
and the data index. This approximate sorting approach is
computationally lightweight, allowing an on-the-fly execu-
tion over the streaming network data. Although this op-
tional process reduces the flow processing rate, it results in
more compact archives and indexes, and eventually leads to
faster response times of the overall system.

The last component in the system is the query processor
which, given a search query and using the bitmap index
structures created, identifies historical flows matching the
criteria given and retrieves them by uncompressing only the
relevant portions of the archived data. Below we provide
more details on each of those components.
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SrcIP DstPort … …DstIP10.4.11.110.20.1.100 2180 ……A. Flow records B. oLSH-based tuple reordering (optional) C. Flow column separation…
LZO compressedBuffer(4MB) (flush to disk when each is filled)COMPRESSED ARCHIVE

CPU thread AD. On-the-fly archive creation E. On-the-fly compressed bitmap index creation CPU thread B0 25550Data column
COMPRESSED INDEX

CPU thread CCPU thread nSerialize flush to disk
Incremental compression using codewordsLiteralLLFLFLF0F 0-FillFill-Literal-FillLiteral-Fill-Literalcodebook 0FLLFLFLFHEADER…0FCompressed bitmap index

4000 flows4000 flows
……

Figure 3: The flow archival process consists in two parallel tasks: creation of compressed columnar archive
(D) and on-the-fly construction of compressed bitmap indexes (E).

4.1 Compressed Archive of Flow Data
The input to our system consists of streaming network

flow records, which are exported by flow meters. As men-
tioned, flow records can record a number of predefined com-
munication attributes; in our system we record the 12 at-
tributes listed in Fig. 2.

Incoming flow records are packetized and processed using
a tumbling data window of 4000 flows (Fig. 3.B). The size
of the window was not selected arbitrarily, but reflects the
amount of processed data (12 attributes × 4000 records)
that fit into the L2 cache of the system. We also exper-
imented with larger flow record block sizes, but did not
observe that it significantly affected the compression rate.
In addition, keeping packetization level low by using 4000
records provides finer-grained access on the archived data
and promotes decompression of fewer archive blocks when
querying the data.

For all subsequent phases, the data are treated in a colum-
nar form, and each attribute (column) of the flow records
is processed independently (Fig. 3.C). Each of these con-
ceptual data columns of length 4000 is compressed using
a user-defined compression scheme. Ideally, algorithms that
can support fast compression and even faster decompression
are preferred. For this reason in our prototype implementa-
tion we chose the Lempel-Ziv-Oberhumer (LZO) compres-
sor [25], which corresponds to one the fastest algorithms

available, particularly for decompression1.
The compressed columnar data archives are created on-

the-fly and stored on disk. To reduce the number of random
I/Os, the column archives are not written to disk as soon as
they are created: the compressed blocks are initially buffered
and only flushed to disk when the buffer is full. In our
implementation, we allocate 4 MB for each column buffer
(Fig. 3.D).

The task described in this section, consisting of packeti-
zation, reordering, and compression, is executed within one
CPU core of the system. Optionally, the compression of
the different data columns can be distributed in different
CPU’s or cores, when heavy-weight compression algorithms
are utilized.

4.2 COMPressed Adaptive indeX - COMPAX
Concurrently with the creation of the compressed flow

data archive, a compressed bitmap index is constructed,
which facilitates the speedy location of relevant portions in
the archived data during the querying process. We call the
new index COMPressed Adaptive indeX or COMPAX. It is
constructed using a codebook of words that significantly re-
duces the bitmap index size. The entire process is performed
online. We begin by elucidating the creation and usefulness
of traditional bitmap indexes.

1LZO is four to five times faster in decompression than the
fastest zlib compression level [26].
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1
7
0
2
6
3
6
0
5
…

0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
… … … … … … … …

b(0) b(1) b(2) b(3) b(4) b(5) b(6) b(7)
Data Bitmap index

Figure 4: An example of a bitmap index.

4.2.1 Bitmap Indexes
The concept of bitmap indexing has been applied with

great success in the areas of databases [3] and informa-
tion retrieval [15]. The basic notion is to keep k bitmaps
(columns), one for every possible value that an attribute
can assume (k refers to the attribute cardinality), and to
update them at every insertion by appending a “1” to the
bitmap corresponding to the inserted value and “0” other-
wise. An example of a bitmap index with k = 8 is shown
in Fig. 4. In addition to fast updates, bitmap indexes allow
inexpensive bitwise AND/OR operations between columns.
Compressed variants of bitmap indexes have appeared in
the literature [32, 14], with the most popular variant be-
ing the World-Aligned-Hybrid index (WAH) [33], which has
been used for indexing and searching on a multitude of
datasets including scientific simulations results and network
flow repositories.

4.2.2 COMPAX encoding
We compress each bitmap index in a column manner on-

the-fly using a codebook2 of four word types. The following
four 32-bit wide word types are used to encode the incoming
bit stream processed in chunks of 31 bits:

1. A literal [L] represents a chunk consisting of a bitwise
mix of zeros and ones; it is encoded as a 32-bit word
identifying the codeword type with the first bit (1), for
example:

1 0011100 11000010 00110000 00000000

2. A 0-Fill [0F] encodes a sequence of consecutive chunks
of zero bits by means of run-length encoding.

For example, a portion of a bitmap index column con-
sisting of a sequence of 3 × 31 zero-bits is encoded
within a single 32-bit word as:

000 00000 00000000 00000000 00000011

where the first three bits (000) encode the codeword
type and the remaining 29 payload bits encode the
number of 31-bit-chunks from the original sequence.

3. An [LFL] word represents a sequence of [L]-[0F]-[L]
words after applying null-suppression. In particular, if
in each of the three words in the sequence only one of
the payload bytes is non-zero (“dirty”) and the dirty

2We borrow the term “codebook” from information theory,
which we feel is appropriate in this context, because the
encoded words help us compress the incoming information.

0FL L

byte

LFL=header

3 2 1 0 3 2 1 0 3 2 1 0

Byte position of 1st L word (2)

Byte position of 2nd L word (1)

Figure 5: Example of the creation of a [LFL] code-
word from a [L]-[F]-[L] sequence.

byte in the [0F] word is at position 0,3 the three dirty
bytes and the two positions (0 to 3) from the [L] words
can be packed into a single [LFL] word. An example of
how the [LFL] codeword is formed is shown in Fig. 5.

4. The [FLF] word represents a sequence of words that
follow a [0F]-[L]-[0F] paradigm. Similarly, to the [LFL]
codeword, when three consecutive words exhibit the
[0F]-[L]-[0F] pattern, with only one dirty byte in each
payload and the dirty bytes of the [0F] words are both
at position 0, then they can be condensed into an [FLF]
codeword while retaining the position of the dirty byte
in the [L] word payload.

The bit encoding for all four codewords in shown at the
bottom right-hand side of Fig. 6.

Difference to WAH: The WAH encoding utilizes two word
types to encode bitmaps: 0-Fill and 1-Fill. In our work, we
introduce the [LFL] and [FLF] codewords because we no-
ticed that such patterns were very predominant in network
flow traffic. In addition, we omit the [1-Fill] from the code-
book because contiguous bit blocks of 1’s are quite uncom-
mon in our setting.

The practical implications of our coding scheme is that it
results in significant space savings. In the experimental sec-
tion, we show that, compared to WAH, COMPAX encoding
can result in space reduction of more than 60%, particularly
when combined with the tuple reordering phase. For exam-
ple, an 8.1 GB WAH-compressed bitmap index is reduced to
3.3 GB when compressed with COMPAX.

Figure 6 depicts the difference of the COMPAX encoding
to WAH. The bits of a column are shown row-wise for pre-
sentation reasons, and the original uncompressed sequence
comprises of 155 bits (indicated as 5 verbatim 31-bit chunks
[V]). In this example we illustrate COMPAX’ ability to con-
dense three WAH words into one. COMPAX packs more in-
formation because of the carefully selected codebook and as
such offers superior compression. In the same figure, we also
depict how the different words are encoded and the meaning
of the various bits.

On-the-fly Bitmap Index creation: The COMPAX-
encoded bitmap indexes can be constructed on-the-fly in an
incremental fashion to reduce memory consumption. Note
that the construction is performed in a single pass on the ob-
served data and requires a look-back of at most two words.
We briefly elucidate the online incremental creation of the
bitmap by an example.

Assume that a 0-Fill codeword has been created in a cer-
tain column, encoding 3 × 31 bits of zeros (length 3), as

3The fill length of the [0F] word must be less than 256 31-bit
chunks.
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Raw  bitmap index 000100100000000000000000000000000000000 … 0000000000000000 000000000000 100010100000000

31 bits 3 x 31 bits 31 bits

Fill length in words

Symbol type: 0F, 1F

32 bits

0001001 00000000 00000000 000000001 000000 00000000 00000000 000000 110 0 0000000 00000000 0 1000101 000000001

0 00001001 000000 11 01000101

32 bits

COMPAX encoding

L

LFL

L=

= V VVVV

=

WAH encoding 0F

01 11 01 0

unused

Position of 2nd L-Byte (0 to 3)

Position of 1st L-Byte (0 to 3)

F-Subtype: 0F, LFL, FLF 

Word type: F, L

Non-zero Byte of 2nd L-Word

Last Byte of F-Word

Non-zero Byte of 1st L-Byte

Value of Literal

Word type: F, L

Word type: F, L

32 bits 32 bits

Literal wordL

0F 0-Fill word

FLF 0-Fill-Literal-0-Fill word

LFL Literal-0-Fill-Literal word

COMPAX codebook

1

0 00

0 01

0 10

Value of Literal

Word type: F, L

Figure 6: Example encoding of a raw bitmap vector (top) using the WAH (middle) and the COMPAX method
(bottom). The COMPAX codebook is shown at the bottom right.

shown in the example for [0F] above. Now, suppose that
for the same column an additional sequence of 31 zeros is
observed. This will result in the creation of an additional
0-Fill word of length 1. By examining the previously pro-
duced codeword, we are able to merge them and produce a
single 0-Fill word encoding 4×31 zeros (length 4). In binary
format this is encoded as:

000 00000 00000000 00000000 00000100

In a similar manner, we maintain the codewords per col-
umn on-the-fly. In addition to 0-Fill words, we distinguish
the following cases:

• [L]: Unlike the case for 0-Fill words, when a new 31-bit
literal chunk is observed, it cannot be merged with a
previously produced codeword, so another literal [L]
word is created.

• [LFL]: To form an [LFL] codeword, a lookback exam-
ines the two previously produced codewords. If they
are [L] and [F] and the current word is a literal—and
all three codewords have only one dirty byte (and the
dirty byte in [F] is at position 0)—then these three
codewords are merged into a single [LFL] word.

• [FLF]: Similarly treated as [LFL].

The advantage of this incremental encoding is the signif-
icant reduction in memory requirements; at no point does
the entire bitmap have to be materialized but it is always
stored and updated in a compressed format. An illustration
of this incremental bitmap creation is shown in Fig. 3.E.

Bitmap Index serialization: The COMPAX compressed
bitmap indexes are serialized to disk by appending the com-
pressed columns sequentially. Every index is prepended with
a header that contains pointers to the beginning of each
compressed column. In such a way, random access to spe-
cific compressed column within a bitmap index is accommo-
dated. To preserve disk space, the header is also compressed,
with the Simple9 algorithm [7], which represents one of the
fastest integer coding techniques, particularly during decom-
pression.

In our implementation, we create bitmap indexes for the
most commonly queried attributes, such as source and des-
tination IP addresses, source and destination ports, protocol,
tcpflags, duration and start time. Particular consideration
is taken for the IP fields: a separate index is maintained
for each 8-bit block of a 32-bit IP address. In this man-
ner one can accelerate wild-card queries over networks (e.g.,
10.1.*.*) by combining compressed bitmaps belonging to dif-
ferent byte indexes using boolean AND operations.

4.3 Querying the System
The proposed architecture can answer very efficiently com-

mon types of queries that are posed by system administra-
tors and security analysts. The system users can utilize both
equality or range queries on attributes contained in the in-
dex, such as source and destination IP addresses, ports, pro-
tocols, and the time-span of interest. The query execution
consists of the following steps (see Fig. 7):

1. Columns/attributes involved in the query are deter-
mined. Relevant columns from the appropriate com-
pressed bitmap indexes are retrieved.

2. Boolean operations among compressed columns are per-
formed directly without explicit decompression. Flow
record positions on the compressed archive are resolved.

3. The appropriate portions of the archive (relevant com-
pressed 4K blocks) are decompressed, and the results
are furnished to the user.

We will explain the above process with an example. Con-
sider the case of an worm attack that occurred the previous
evening. The system administrator would like to find all
destination IP addresses contacted on port 137 by nodes in
the range 10.4.0.0/16. The corresponding query is:

Query: “Find all destination IP addresses con-
tacted by the source IP address range 10.4.*.* at
destination port 137.”

The various substeps are depicted in Fig. 7. As bitmap
index files are created on an hourly basis, first the bitmap
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Query: SELECT DstIPWHERE SrcIP = 10.4.*.* AND DstPort = 137 

Compressed bitmaps DstIP
BITMAP INDEX:SrcIPByte 1 BITMAP INDEX:SrcIPByte 2
10 4

BITMAP INDEX:DstPort
137 Join (filtering) Data retrieval

ANDingof bitmaps20010010 Flowposition10500
Compressed index PortSrcIP:2SrcIP:1 4K flows4K flowsidx:3idx:1

Figure 7: Example of a query execution.

index within the time range of interest in the query is re-
trieved. The bitmap indices for SrcIP.byte1, SrcIP.byte2
and DstPort are retrieved, and from those the relevant com-
pressed columns 10, 4, and 137, respectively, are fetched.
Note that we do not need to uncompress the columns. Sub-
sequently, an AND operation is performed on the three com-
pressed columns. This represents an inexpensive operation
that can be done directly in the compressed domain as one
does not need to AND the portions containing the 0-Fill
codewords.

Suppose the join result of the three compressed columns
indicates that there are matches at flow row numbers of
{200, 10010, 10500}. Because the user wants to retrieve the
destination IP addresses, the query processor will need to
uncompress the relevant blocks in the archive of column
DstIP. Recall that each of the compressed blocks on the
archive contains 4000 flow records. Therefore, to access the
200th, 10010th and 10500th flow record, we need to retrieve
only the first and third compressed blocks in the archive.
The start position of those blocks is provided in the header
of the archive. Finally, the result set of the three destination
IP addresses, contacted by the specified range of source IPs
in the query, is returned to the user.

4.4 Online-LSH (oLSH) Stream Reordering
We also introduce an online stream reordering mechanism,

which is based on the principle of Locality Sensitive Hashing
(LSH) [17, 23]. We call this variant online-LSH or oLSH for
simplicity. It implements an intelligent buffering mechanism
with the purpose of packing together “similar” records from
a data stream. It has been shown that data sorting leads to
smaller and faster bitmap indexes [27, 21]. Fastbit [3], the
reference implementation of the WAH algorithm, accommo-
dates an optional off-line column sorting to decrease index
sizes. In this work, we rely on sorting to decrease the disk
consumption of both indexes and columns.

The general characteristics and benefits of oLSH are:

• It reorders the incoming data records in a fast and ef-
fective way, resulting in data blocks with lower entropy
on average.

• It improves the compression rate leading to smaller
bitmap index and archive sizes.

• By placing similar records in close-by positions it even-
tually leads to faster response times of the system, be-

H

Input data stream

oLSH sorted output stream

Hash bucket heads

Maximal chain length (BlkSize)

Figure 8: Mechanism of the approximate on-the-fly
LSH (oLSH) sorting.

cause fewer data blocks need to be decompressed from
the data archive.

The stream reordering is implemented by a hash-based
buffer, which, by using several LSH-based functions, groups
flow records by content. In fact, the basic premise of LSH
is to use hash functions that cause vectors which are close
according to a distance function to collide with high proba-
bility to the same hash bucket. The sorted output stream is
then built by constantly removing similar records from the
hash (cf. Fig. 8).

We consider each flow record as a vector ~r ∈ Nd, where
d is the number of the attributes relevant to the sorting
process. The purpose of the LSH functions is to aggregate
“similar” flows to the same hash bucket. Each hash bucket
eventually contains a chain of “similar” records. We employ
n LSH functions based on p-stable distributions, such as the
ones proposed by Datar et al. [13]. Each LSH hash function
h~a,b : Nd → Z maps a vector ~r into a single value (“bin”)
and is defined as:

h~a,b(~r) =

⌊
~aT~r + b

W

⌋
where ~a is a d-dimensional random vector with each compo-
nent chosen independently from a Gaussian distribution4,

4The Gaussian distribution is 2-stable; it can be shown that
elements, which are close in the Euclidean distance sense,
will be mapped to the same value with high probability and
to distinct values otherwise [13].
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W is the width of a bin, and b is a real number chosen
uniformly from the range [0,W ].

In our scenario, we wish to pack together flow records
based on the most often queried attributes. Therefore, we
chose ~r to be an 11-dimensional vector (d = 11) consisting
of the attributes source and destination IP addresses (2× 4
bytes, i.e., 8 dimensions) as well as source and destination
ports and protocol numbers (3 dimensions).

We reduce the probability of collisions of unrelated flows
by computing the hashtable index value as a sum of many
LSH functions. In detail, H1(~r) =

∑n
i=1 h~ai,bi(~r) mod P

from the n mappings of ~r, where P is the hash size. In
addition, as collisions of unrelated records may still occur
within each hash chain, chains are kept ordered using an
InsertionSort algorithm. The key used for sorting in the
InsertionSort is computed using a different combination of
LSH functions H2 that utilizes different projection spaces:
H2(~r) =

∑n
i=1 h~a

′
i,b

′
i
(~r) mod Q.

No LSH sorting With LSH sorting
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Figure 9: Comparison of positions of a query with-
out (left) and with (right) LSH reordering.

The stream reordering process consists of inserting incom-
ing flow records into the hash and dispatching new blocks to
the compression and indexing components. Whenever the
length of a chain reaches a configurable maximum thresh-
old (maxBlockSize), the chain is removed from the hash and
its content used to fill a block (or several blocks in case
of collisions). We also employ two thresholds, MMax and
MMin, to limit the number of records to be buffered (i.e.,
the memory budget). When the total number of flows stored
by the hash reaches MMax, blocks are created by packing
(and purging) the longest chains. The process stops when
cnt reaches a value lower than MMin. A pseudocode of the
online reordering process is shown in Program 1.

Figure 9 illustrates the benefits of online record reorder-
ing. We compare the row positions (matching records) re-
turned by an IP query lookup when executed over two NET-
FLi flow repositories storing exactly the same traffic and
built without and with oLSH reordering enabled. In the
unsorted version, matching positions are spread all over the
column, whereas in the version using the online-LSH the
matching records are concentrated in the first half. The
data retrieval from compressed columns benefits from this
because fewer blocks from the archive must be accessed and
decompressed.

Program 1 oLSH reordering of the streaming records

processElement(hashtable hash, flow record r){
P = hash.length(); // size of hashtable

h1 = sum( h(a[i], b[i], r) ) mod P; // hashtable index
h2 = sum( h(a’[i], b’[i], r) ) mod Q; // used for

// insertionSort

chain = hash[h1].insertionSort(r, h2);
if (chain.length() > maxBlockSize)

emitBlock(chain, archive, index); // send to archive
// and index

maxCount = hash.totalNumBuckets();
if (maxCount > MMax){ // memoryBudget

do{
chain = longest_chain(hash);
emitBlock(chain, archive, index);

} while(hash.totalNumBuckets() > MMin); // minimum
} // threshold

}

5. EVALUATION
In this section we evaluate the performance of our solution

and investigate critical performance metrics of the archiving
and querying process. We use two datasets in the evaluation:

• Six days of NetFlow traces of access traffic from a large
hosting environment (HE).

• A two-month NetFlow trace of internal and external
traffic in an average-sized enterprise production net-
work (PN).

The characteristics of the two datasets are listed in Ta-
ble 1. The traffic of the two network environments differs
significantly in terms of the distribution of IP addresses and
service ports. The flow attributes included in the index and
archived data columns are presented in Table 2.

Table 1: Datasets utilized

Dataset # flows Length Size
Hosting Environment (HE) 231.9 million 6 days 6.9 GB
Production Network (PN) 1.2 billion 62 days 37 GB

Table 2: Flow attributes present in the index and
archived data columns.

Attribute Size Index Archive
Source IP address 4 Bytes X X
Destination IP address 4 Bytes X X
TCP/UDP source port 2 Bytes X X
TCP/UDP destination port 2 Bytes X X
Layer 3 protocol 1 Byte X X
TCP flags 1 Byte X X
Source AS number 2 Bytes - X
Destination AS number 2 Bytes - X
Number of Bytes 4 Bytes - X
Number of packets 4 Bytes - X
Flow start time 4 Bytes X X
Duration 4 Bytes - X

We have implemented the indexing, storage, and query-
ing techniques as a C++ library of 25 000 lines of code.
The library comes with two similarly optimized implemen-
tations of both WAH and COMPAX compressed bitmap in-
dexing algorithms. In both cases, boolean operations do not
require any explicit bitmap decompression. The software
does not require any external library except for LZO [25],
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Table 3: Disk space needed to store the two data-
sets for different compression algorithms and stor-
age approaches.

Flat files NET-FLi archive
Dataset Raw GZIP LZO LZO LZO+oLSH
HE 6.9 GB 2.5 GB 3.5 GB 3.7 GB 2.6 GB
PN 37 GB 8.1 GB 13.2 GB 13.8 GB 8.2 GB

which provides us the LZO1X-1 [26] algorithm implementa-
tion used for compressing data columns. Among the algo-
rithms belonging to the LZO family, LZO1X-1 does not offer
the best compression rates but it has instead been designed
for achieving the best compression and decompression speed
instead.

All experiments have been executed on a commodity desk-
top machine equipped with 2 GB of DDR3 memory and an
Intel Core 2 Quad processor (Q9400) running GNU/Linux
(2.6.28 kernel) in 32-bit mode. The processor has four cores
running at 2.66 GHz and 6 MB of L2 cache. We store flows
on a 320 GB desktop hard drive5 formatted with a single
Ext3 partition.

5.1 Disk utilization
We measure the disk consumption of our methodology for

both the archive and the COMPAX encoded bitmap index.

Archive size: We illustrate the disk utilization of the raw
flow data, of their compressed counterpart (the common
case for non-indexed archives), and finally of our compressed
columnar approach. To compress the raw data, we applied
two widely used compression utilities: gzip and lzo. More-
over, we are interested in measuring the space saving when
enabling the oLSH reordering of flows in our approach. We
report our findings in Table 3.

As expected, the space required to store flow files com-
pressed with LZO (which is optimized for speed rather than
compression) is larger than that required for same flat files
compressed with GZIP of the two datasets.

We observe that the total size of the column-oriented
NET-FLi archive, when compressed with LZO (3.7 GB and
13.8 GB), requires 5 % and 6 % more space than the flat
files compressed with LZO (3.5 GB and 13.2 GB). This was
to be expected, because by compressing the data in small
blocks (up to 4000 records each) the overall compression
rate decreases. However, at the same time, the block-based
compression method enables partial data decompression.

When enabling the oLSH on-the-fly record reordering, our
approach can drastically reduce disk space consumption: up
to 40 % for the PN dataset (2.6 GB) and up to 30 % for the
HE dataset (8.2 GB). In both test datasets, the combination
of oLSH with LZO compression allows our methodology to
reach similar compression rates as the ones archived with
GZIP when applied to the raw flow files.

Index size: We now measure the disk space savings induced
on the bitmap index created when using the COMPAX en-
coding and compare it with the space size required by the
WAH bitmap index methodology.

5The hard drive is a 7200 rpms Hitachi HDP725032GLA380
equipped with 8 MB of cache. The system is capable to
perform cached reading at 2400 MB/s and unbuffered disk
reads at 80 MB/s (measured with hdparm).

Table 4 reports the disk space consumption of WAH in-
dexes, COMPAX indexes, and COMPAX indexes when oLSH-
based sorting is enabled. Compared to WAH, the COMPAX-
compressed indexes are 30% smaller for dataset PN and 40%
for dataset HE. In the next section, we show that this is
achieved without any impact on the CPU load. Enabling
the oLSH component allows the disk consumption of the
index to be further reduced. In fact, the combination of
COMPAX with oLSH reordering results in indexes that are
up to 60% smaller.

Table 4: Comparison of index sizes built using
WAH, COMPAX and COMPAX+oLSH.

Dataset WAH COMPAX COMPAX+oLSH
HE 8.1 GB 4.9 GB 3.3 GB
PN 26.3 GB 18.6 GB 12.8 GB

Aggregate savings: Now, we consider the aggregate stor-
age savings, on both the archive and the bitmap indexes.
By combining our compressed index bitmap and oLSH sort-
ing, we see that the total disk consumption decreases from
40.1 GB to 21 GB for dataset PN and from 12.8 GB to 5.9 GB
for dataset HE. Thus, we managed to almost halve the
total storage requirement. Even with oLSH reordering
disabled, we can still save space thanks to the enhanced com-
pressed bitmap indexes. The total disk consumption of the
archive and COMPAX-based indexes requires 20 % to 38 %
less space than the same columns and WAH based indexes.

5.2 Stream Record Processing Rates:
Archive and Index

NET-FLi has been designed to handle high-speed streams
of flow records. In this section, we evaluate the average sus-
tainable insertion rate, expressed in flows per second (f/s).
We test our storage solution using as data-feeds historical
uncompressed flow traces, which are stored on a mainstream
solid state drive6. The drive provides a sustained reading
speed of 170 MB/s corresponding to more than 5 million f/s.
Archives and bitmap indexes are stored on a regular hard
drive. This simple setup allows us to reproduce flow rates
that can only be observed in very-large ISP networks.

We measure the insertion rate of our solution with and
without enabling oLSH flow reordering. Indexes are built
using the WAH and our COMPAX encoding (without and
with stream reordering enabled). Table 5 reports the record-
processing rates for building both the index and the archive.

Without enabling oLSH reordering, our storage solution
can handle up to 1.2 million f/s. To put these number into
perspective, we mention that medium-sized service provider
network typically exhibit peak rates of 50,000 f/s.

Table 5: Record processing rates of our system when
building both the index and the archive.

Dataset WAH COMPAX COMPAX+oLSH
HE 768K f/s 936K f/s 474K f/s
PN 1150K f/s 1255K f/s 513K f/s

One important topic that we need to mention is that
bitmap compression using COMPAX is actually more light-
weight than WAH and results in higher record processing
rates. Without reordering, our storage solution can handle

6Intel X-25M G1, 80 GB model
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Figure 10: Comparison of index performance for
three bitmap index variants

up to 0.93 million f/s (21 % more than WAH) for dataset
HE and 1.26 million f/s (9 % more) for dataset PN. By us-
ing a profiler, we realized that COMPAX is much more cache
friendly than WAH. Indeed, COMPAX performs its online
compression steps by packing three WAH-words into a sin-
gle word ([FLF] or [LFL]), resulting in fewer L2 cache misses
on average, thus allowing more effective stream record pro-
cessing.

When enabling the oLSH component, as expected, the
insertion rate drops down to 474K f/s for dataset HE and
513K f/s for dataset PN. However, the reordering process
eventually achieves as much as 55 % space savings. In ad-
dition, as we will demonstrate in the following section, the
record reordering results in improved response times of the
system.

5.3 Index Performance
First we compare the performance of the bitmap index

only (without access to the archive), when the index is en-
coded using WAH, COMPAX, and COMPAX+oLSH. We
pose queries on the IP address field, because because IP
addresses are typically the most often queried attribute.
By querying exact IP addresses, we evaluate the perfor-
mance of boolean operations over compressed bitmaps as
each IP lookup requires the bitwise ANDing of four differ-
ent bitmaps, each corresponding to the four bytes of an IPv4
address.

For this experiment, we use a smaller subset of the data,
which can be cached entirely by the system, by building the
index using three days of flow data from the HE environ-
ment. The bitmap index sizes are 1.5 GB for WAH, 845 MB
for COMPAX and 314 MB for COMPAX+oLSH. As queries
we use 3000 random distinct IP addresses, which we grouped
into 30 sets of 100 addresses each. For every set, we report
the time for performing the 100 independent and sequen-
tially executed IP address lookups. The time measurements
are reported in Fig. 10.

The response times reported are determined exclusively
by the performance of boolean operations on IP address byte
indexes. Queries on the COMPAX-based index are on aver-
age 15% faster compared with WAH-based index. This re-
sult indicates that opting for the more elaborate COMPAX
bitmap encoding does not necessarily penalize performance,
because boolean operations are still performed directly on
the compressed bitmaps (i.e., without explicit decompres-
sion). In fact, on the COMPAX-encoded index, the addi-
tional decoding complexity is compensated by the smaller
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Figure 11: Query time vs. number of results: Com-
parison of the total query time (top) and its separa-
tion into time on the index access (middle) and data
retrieval time from the archive (bottom), with and
without oLSH reordering.

working set, which is a consequence of the improved com-
pression rate.

Finally, COMPAX+oLSH is observed to be four times
faster on average than WAH for the same IP address lookups.
In this case, the improvement is not just attributed to the in-
creased cache locality, but rather to the sorting itself. The
result of the sorting is that literal words are more dense
whereas fill words can represent longer sequences. In this
way, the number of bitwise instructions is substantially re-
duced [20].

5.4 Query Performance: Index and Archive
Lastly, we measure the complete system performance un-

der query operations. We create the index and the archive
with and without the oLSH reordering. We measure the cu-
mulative response time required when executing queries over
the 1.2 billion flows of dataset PN. The disk consumption of
the index and archive without the oLSH option amounts to
approximately 31 GB. With oLSH enabled, the size of the
resulting repository is 20 GB.

We pose random queries with increasing number of wild-
cards such as:

srcIP = 10.4.5.*, dstPort=X, dstIP = 10.5.5.*
srcIP = 10.4.5.*, dstPort=X, dstIP = 10.5.*.*
srcIP = 10.4.*.*, dstPort=X, dstIP = 10.5.*.*
...
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to create queries with decreasing selectivity, leading to an
increasing number of results. We sort and “bin” the number
of results into a histogram format. Each bin is labeled with
the average number of results returned by all the queries in
this bin. In Fig. 11, we report the following three measures:

Index time The time needed to search the index and join
the resulting indexes.

Archive time The time needed to retrieve the data from
the archive.

Total query time The sum of the two above measures.

For each measure, we report the runtime with and with-
out oLSH reordering. We notice that by using oLSH the
total query time decreases by more than 40 %. This result
is attributed to the smaller index and archive size of the
oLSH variant. For the queries with high selectivity, the re-
sults are returned in less than a second, whereas for queries
with lower selectivity the response time can be 3 seconds.
This outcome is very encouraging because the query covers
a time-span of two months.

The middle and lower parts of Fig. 11 segregate the total
query time into its components. The time to retrieve results
from the index and join them (middle) is nearly constant
and approximately on the order of 500 msec. At the bot-
tom, it can be observed that the data retrieval process from
the archive contributes most to the total response time. At
the same time, this graph highlights the significant perfor-
mance boost provided by the reordering component. The
careful pre-processing of flow records in both the index and
the archive results in substantial query performance im-
provements. In particular, the effective record reordering
decreases the system response time by up to 80 %. This is
attributed to the better packing of similar records, reducing
the number of data blocks to be decompressed and increas-
ing the decompression speeds of individual blocks.

6. APPLICATION OF NET-FLi
In this section, we demonstrate the utility of NET-FLi in

a typical use case scenario for network monitoring. A ma-
chine has been detected to be infected with a computer worm
that exploits a vulnerability of an application protocol. To
quarantine any other possibly infected machine, the admin-
istrator needs to know all machines that communicated with
the infected machine using the vulnerable protocol.

Filtering a large flow repository for a small subset of flows
is a tedious task, as the entire repository needs to be scanned
linearly. Using the index capabilities of NET-FLi, we expect
to achieve a significant reduction of the time to identify pos-
sibly infected machines.

We perform an analysis on the two-months PN dataset
worth of 1.2 billion flows and focus on machine M that is
suspected to spread a worm using a vulnerability on service
port 445. We query the system for all machines that have
been contacted by M on port 445. Therefore the query has
the form:

SELECT DstIP
WHERE SrcIP = M AND DstPort = 445

In the introduction, in Fig. 1, we depict an propagation ex-
ample of a similar worm epidemic; the center node represents

a suspicious machine whereas an edge signifies a communi-
cation link on vulnerably port between the two machines.
Such a graph can be created with NET-FLi by recursively
querying for flows emitted by suspectedly infected machines
in the network.

We measure the time needed to find all 2225 relevant
graph connections and to retrieve the corresponding dstIP
addresses using COMPAX+oLSH, with a completely empty
cache (unmounting the disk), as well as with a “warm” cache
at the operating system level, when other queries have been
previously posed. We repeat the experiment 100 times. We
discover that the uncached query response time is 62.314 sec
(with standard deviation of σ = 0.798), on average. When
reissuing the same query with a ‘warm’ cache, the response
time drops down to 2.345 sec (σ = 0.051), on average. In
comparison, the identical query executed on a conventional
flat flow file repository using linear scanning over all records
takes as much as 6062 sec, i.e., more than two orders of
magnitudes longer.

Our results show that the NET-FLi approach exhibits low
response times to locate the candidate records and return
the flow data. In addition, NET-FLi can exploit the cache
capabilities offered by the operating system, without requir-
ing a dedicated cache/buffer manager. The last observation
is particularly attractive for interactive query refinement:
for example, in a network investigation, typically a number
of queries are used to narrow down the root cause. Sub-
sequently, refined queries on previously cached indices can
be answered almost for free. In contrast, linear scan ap-
proaches cannot benefit significantly from the LRU-oriented
cache system of the operating system.

7. LIMITATIONS AND FUTURE WORK
In the evaluation, we focused on indexing and archiving

flow records with a fixed structure of fields without address-
ing records with varying structure, e.g., defined with tem-
plates. Nevertheless, our approach is still applicable under
such conditions. By maintaining columns for all attributes
and a template index, we can compensate for missing values
in some of the records.

NET-FLi is modular and can accommodate different al-
gorithms for column data compression. We plan to evaluate
more efficient compression algorithms, such as PFOR [36],
and to design algorithms optimized for specific attributes
(e.g., start and end timestamps).

As NET-FLi is inherently parallel by design, we plan to
develop a distributed architecture of a cluster of commodity
PCs using NET-FLi as a back-end. Our experiments sug-
gest that the compressed indexes exhibit specific patterns
depending on the traffic behavior. We plan to study these
patterns for visualization tasks [35] or for detecting traf-
fic anomalies and inferring traffic properties directly on the
compressed bitmaps.

8. CONCLUSION
We introduced NET-FLi, a high-performance solution for

high-speed data archiving and retrieval of network traffic
flow information. Our solution achieves:

• Data record insertion rates in the range of 0.5M to
1.2M flows per second depending on the desired
compression level.
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• An adaptive, compressed bitmap indexing technique,
called COMPAX, which outperforms the state-of-
the-art encoding WAH in terms of CPU and com-
pression efficiency.

• An on-the-fly stream reordering approach based on lo-
cality sensitive hashing (LSH) which renders the data
compression rate of flow records equivalent to that
of gzip.

• Interactive response times for typical queries, when
sifting through gigabytes of compressed flow data.

Our solution can be used to drive a wide spectrum of ap-
plications including iterative hypothesis testing in network
anomaly investigation, on-demand traffic profiling, and cus-
tomized reporting and visualization. Moreover, we believe
that it can be applied to many other domains challenged by
high data-volumes and exceptionally high insertion rates.
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