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Abstract—This paper proposes a control strategy for plug-
in electric vehicle (PEV) fast charging station (FCS) equipped
with a flywheel energy storage system (FESS). The main role
of the FESS is not to compromise the predefined charging
profile of PEV battery during the provision of a hysteresis-type
active power ancillary service to the overhead power system.
In that sense, when the active power is not being extracted
from the grid, FESS provides the power required to sustain the
continuous charging process of PEV battery. A key characteristic
of the whole control system is that it is able to work without
any digital communication between the grid-tied and FESS
converters. Detailed system modeling and dynamics analysis of
the controller are carried out for the different operating modes
of the FCS system. A lab-scale prototype was built to validate
the proposal. The presented experimental results proved the high
accuracy of the theoretical analysis.

Index Terms—TFlywheels, fast charging stations (FCS), dis-
tributed control, plug-in electric vehicles (PEV)

I. INTRODUCTION

OWADAYS the increasing public awareness about envi-
ronmental pollution and fossil fuels depletion is leading
to dramatic expansion of renewable energy sources (RES),
such as wind turbines and photovoltaics [1]-[3]. However, with
the penetration of large amount of these variable sources, is-
sues such as active power imbalance and frequency fluctuation
are introduced in the operation of the power system [4]. It is
therefore critical for system operators to set aside additional
reserve capacities for ancillary services like frequency control
and load following. Conventionally, this was provided by the
generation units (supply side) [5]. Recently, the concepts of
load control and demand response have been shifted into focus
due to its potential to provide such services by aggregating
large numbers of flexible loads into controllable entities. In
such a manner, distributed system operators (DSO) could
manage loads to support the overall grid stability and better
optimize their power generation resources [6].
At the same time, transportation sector is changing towards
a greater electrification of vehicle fleets. According to the
Electric Power Research Institute, it is estimated that by 2020
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the Europe’s electric vehicle (EV) market is going to increase
by 5 times, and up to 35% of the total vehicles in the U.S.
will be plug-in EV (PEV) [7]. The industry has defined three
levels of charging patterns for EVs [8]: Level 1 comprises an
on-board single phase ac charger of up to 2kW and usually
takes place at residential households. Level 2 is typically used
in private or public outlets with dedicated on-board single
phase or three phase ac charger with power rating from 4 kW
to 19.2kW. Level 3 has the highest power rating and uses a
dedicated off-board dc charger of up to 240 kW. This type of
charger is often referred to as the fast charging station (FCS)
[9].

The recommended charging profile is proprietary to the
particular battery manufacturer, which commonly includes two
stages: constant current and constant voltage stages. In [10] a
typical Level 3 charging profile of Nissan leaf is given, the
charging power is 50kVA and duration time is around 30
minutes. Among the charging patterns, level 3 has the most
significant impact on power system. FCSs will account for a
considerable part of total energy consumption in future power
systems and will have a great potential to provide flexible load
control reserves managed by DSO [11]-[14].

Ancillary services by PEVs can be provided in different
ways. For example, in [12] a vehicle to grid (V2G) based
aggregation of PEVs is proposed to regulate the charging
and discharging rate in order to contribute to the active
power regulation of power system. In [13], PEV chargers are
controlled in unidirectional way to simply switch on or off and
modify the aggregated charging pattern. In [14], a hysteresis
control originally used for thermostatically controlled loads
[15] is employed for PEV charging to actively control the
aggregated consumption of higher number of chargers. This
is done by adapting individual PEV states of charge (SoC).
The signals from upper-level controller are used to determine
the instantaneous charging rate [14]. In order to keep the
heath of battery, it is recommended that the charging profile
defined by manufacturer is not interrupted [16]. However,
the main limitation of all these strategies above is that the
charging pattern recommended by battery manufacturers is
compromised and thus the lifetime and reliability of PEV
battery is reduced [16].

In order to mitigate the adverse effects of discontinuous
charging of PEV batteries, type 3 FCS can be enhanced with
local energy buffers based on energy storage system (ESS)



[9], [10], [17]. Battery ESS (BESS) is one of the most
extensively used ESS technologies in industrial applications
[18], [19]. However degradation is still an unsolved problem
for BESS [17], especially in the application considered in this
paper, which is characterized by deep and frequent cycling.
Compared with BESS, flywheel ESS (FESS) is a more suitable
technology for providing frequent and fast power compensa-
tion services; it is a mature and economical technology, which
has a high power density and virtually no degrading problems
caused by frequent charging and discharging [9], [17]. This
paper extends and provides experimental validation of the
concept proposed in [9]: a lab scale prototype for a type 3 FCS
with integrated FESS has been developed and experimental
verification that proves its performance in different operation
points has been carried out for the first time.

Regarding the design of flywheel, a standard induction
machine may not be suitable for practical implementation if
the flywheel is intended to operate at very high rotational
speeds to maximize energy storage. Several specific constraints
should be considered: low losses in standby mode to minimize
self-discharging; run at rated power through wide range speed;
good efficiency over all speed range; rotor losses and cooling
condition. Practical design aspects of the flywheel are out of
the scope of this paper. More details in this regard are given
in [20]-[23].

FESS coupled to a common dc-link has been employed
in the past [24]-[28]. In most cases, a centralized controller
which relies on a high bandwidth communication among
power converters is needed. Existence of communication links
is a disadvantage, because it introduces a single point of
failure and hence reduces the reliability of the system. In
particular, breakdown of communication links will in general
lead to a failure of the whole system. The implementation
of distributed bus signaling (DBS) control overcomes this
limitation [29]-[31]. DBS coordinates the grid and FESS
converters by introducing droop based term in the FESS dc-
link control loop. As shown in Section III, this key feature
has been successfully implemented and experimentally tested
here.

Based on the previous discussion, the contributions of this
paper can be summarized as follows: 1) The DBS strategy has
been appropriately modified for a type 3 FCS equipped with a
FESS so as to support hysteresis type ancillary service, which
permits to fulfill requirements of DSO and recommended PEV
charging profiles at the same time. 2) The dynamic prop-
erties of this particular strategy have been comprehensively
analyzed, and 3) Extensive experimental verification of the
theoretical findings has been carried out.

The rest of the paper is organized as follows. Section II
depicts the configuration of FCS and develops a dynamic
model for individual components in the system. In Section III,
a hysteresis control with integrated DBS method is proposed
to achieve decentralized coordination between all units and the
full scale control architecture used for theoretical assessment
is presented. In Section IV, a detailed modeling of the system
dynamics is provided. Experimental results that indicate the
feasibility of proposed method are presented in Section V.
Finally, Section VI gives the conclusion.
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II. CONFIGURATION OF THE FAST CHARGING STATION

Fig. 1 depicts the aggregation concept of a number of
FCSs that resemble the structure originally proposed in [9].
The aggregators serving as intermediaries generate the control
references to each individual local FCS by processing the DSO
commands. The basic structure of each FCS system upgraded
with a dedicated FESS is also detailed in Fig. 1: a set of
PEV chargers and a pair of three-phase ac/dc converters are
connected around the common dc bus with grid and FESS, re-
spectively. A suitable control operation should fulfill DSO and
PEV charging requirements at the same time, but also achieve
a robust dc-link regulation (i.e., a stable and safe operation
of the power electronics devices in all operating modes). The
dc-link dynamics are set by the following equation:

dvpc(t)
dt

where Cp¢ is the capacitance connected to the bus, igqc(t),
irae(t) and ipg.(t) are the dc currents flowing from the
grid and FESS, and extracted by the PEV charger(s) load,
respectively. The PEV charger, grid and FESS converters have
their own specific dynamic features, which are analyzed in the
following sections.

Coc = igdc(t) +irac(t) — irac(t) )]

A. Grid Interface

A two-level PWM rectifier is used to connect the FCS
with the grid. A d-q synchronous reference frame is used for
control. The dc-link voltage and reactive power controllers
generate their corresponding current references. Assuming that
the grid voltage is perfectly synchronized with the d-axis
[ega(s)], the dc-link current can be derived as [32]:

ecd(s)ica(s)
UDc(S)

Equation (2) can be linearized around the operating dc
voltage Vpc, obtaining:

EGd + 2 IGd Rline + IGq Lline wlg
Vbe

iGac(s) = 1.5 )

igac(s) = 1.5 ca(s) (3)

where Eqq, Igq and Ig, are the equilibrium values of
ecd(s), iga(s) and igq(s), respectively. Taking into account
that the voltage drops at line resistance and inductance are
small compared with the remaining term, equation (3) can be
simplified as follows:
556‘ficd(s> “
On the other hand, it should be mentioned that the dy-
namics of inner current controllers are considered ideal: as
the inner current loops are much faster than the outer loops,
it is assumed that i¢q(t) and igq(t) references are followed
instantaneously [33].

gcdc(s) =15

B. FESS

In this work, a FESS driven by an induction machine (IM)
is employed, however the control strategy in this paper is also
suitable for PMSM or BLDC driven FESS which have better
performance in efficiency, power density and other aspects but
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Fig. 1. Configuration of the FCS with dedicated FESS device and system level control structure.

with higher price [23]. Regarding control of induction ma-
chine, an indirect field oriented control (FOC) is considered.
The rotor flux is aligned with the d-axis (i.e., ¥q(t) = 0),
and hence its value is controlled by the d-axis current ipq(t).
Then, the g-axis component iz, (t) controls the electric torque
[25]. Since one of the FESS control objectives is to regulate
the dc-link voltage, it is important to relate dc-link and ¢-
axis currents [25]. The ac voltage equations at the converter
terminals are given by:

, dipa(t .
’Upd(t) :Rslpd(t) + oL, FC‘;( ) — weJLSqu(t)
dipg(t
UFq(t) :Rsipq(t) + O’LSZFdiqt() + weULsiFd(t) (@)

L
+ weL—f%(t)

where L is the mutual inductance, L, L,, R, R, are stator
and rotor inductances and resistances, respectively; w, is the
flux rotational speed and o is the total leakage coefficient [25].
From (5), its steady-state operation point can be well approx-
imated by neglecting time-derivative terms, voltage drops in
the resistances and slip [25], [34]. Under these assumptions,
the steady-state voltages at the converter terminals are given

by:
Vega =0
Vig = wrLolpg

(6)

with w, being the mechanical speed.
The FESS current flowing towards the common dc bus can
be expressed as:

Vrd(t)ird(t) + vrg(t)irg(t)
Upc(t) '

N

irac(t) =15



Then, a small-signal model can be obtained by linearizing (7)
around operating point defined by (6) and nominal dc-link
voltage, giving rise to

wrLolpq~

irdc(s) = 1.5 irq(s) (8)

Vbe
with Irg being the equilibrium value of ipq(s).

The swing equation of the FESS shows the changes in the
rotational speed of the rotor

dwy.(t) - p L(2) .
dt = 1.5§E1Fdlpq(t), (9)

T.(t) = J

where J is the FESS inertia and p is the number of pole
pairs [34]. This expression is used to represent the mechanical
dynamics and to tune the droop control loop responsible for
DBS strategy.

C. PEV Battery

PEV battery is charged according to predefined charging
profile recommended by manufacturer. This profile typically
includes constant current charging stage followed by constant
voltage charging stage [16]. Different from other works [12]-
[14], the charging process of battery operates continuously
without interruption and there is no discharging condition of
battery either in this paper. The bandwidth of inner current
and voltage control loops that regulate the charging process
are normally in a Hz range and can be considered decoupled
from other dynamics in the system [9]. Therefore, it can be
concluded that the current introduced by the PEV load can be
modeled as a disturbance, and it does not have an impact on
dynamic properties of the system [9].

III. IMPLEMENTATION OF FCS CONTROL STRATEGY

This section explains the principal functionalities of hystere-
sis control strategy. Its main purpose is to interactively adjust
the active power consumption of each singular FCS so that the
aggregated loading of multiple FCSs behaves in a predefined
way. It is foreseen that DSO regulates this aggregated char-
acteristic by sending appropriate control signals to individual
FCSs [14].

A. Tracking of DSO Commands

As shown in Fig. 2, DSO can shift the hysteresis charac-
teristic up and down through the control signal Epgo(t). In
that way, it can indirectly regulate the power consumption of
FCS based on predicting variation of RES production and load
consumption or other schemes [14], [35]. However, it should
be noted that generation of EFpgo(t) command is out of the
scope of this paper. For that matter, the implementation of
hysteresis control strategy is demonstrated here on a single
FCS, while DSO signal is assumed to be predefined and is
treated as an open loop input.

www.microgrids.et.aau.dk

B. DBS for Coordinated Performance

It is well known that intermittent charging and termination
of charging is undesirable for PEV battery, as it may cause
the reduction of its lifetime [16]. Therefore, a dedicated
FESS is used to achieve the hysteresis control objectives,
but without compromising the recommended charging pattern
of PEV battery. In order to integrate FESS within the FCS,
coordination between FESS and grid converters needs to be
established. It is important to highlight that this is achieved
by a fully decentralized DBS control strategy [9]. The basic
DBS principle is explained in the following paragraph.

Both grid and FESS converter are connected to a common
dc bus. Therefore, a robust operation including continuous
supply of PEV load, dc-link regulation and DSO average
power tracking are mandatory control objectives. They are
realized through the DBS strategy: the dc voltage reference
includes a speed dependent droop controller.

Te(S) :(KpF + %) HVDCTef - VDC(S)]

— Kd[wmref - WT(S)]]

(10)

with K,y and K,y being constants of a PI controller, Kg is
the droop constant.

The g-axis current reference Irgye f(s) is then obtained as
follows [9]:

T.(s)

150k
D9, Fd

IFqTef(S) = (11)

It should be noted that grid and FESS controllers adjust
their operation by observing the deviation of dc bus voltage
to realize the power balancing, and therefore, a digital commu-
nication between them is not needed [9]. It is also important
to mention that, from a practical realization point of view,
the maximum dc-link variations should be kept inside a safe
operation range.

IV. SYSTEM MODELING AND ANALYSIS

Fig. 2 shows the block diagram of an overall system
controller. Besides the advanced techniques addressed in the
previous section, it should be also bore in mind the non-
linearities introduced in the controller. The effects of these
non-linearities are detailed in this section.

First the full model of the system, as presented in Fig.2,
was assembled in MATLAB/Simulink using the parameters in
Table I. The dynamic response of dc voltage, speed of FESS
and grid d-axis current are shown in Fig. 3a to 3c. From these
figures, five operating modes can be identified (see also Table
1D).

e Mode I. Grid and FESS controllers are both activated.
Dc-link voltage and speed of FESS are both at nominal
value. Grid converter provides power for the loads and the
losses in the system. FESS is in standby mode, meaning
that it only extracts the power required to compensate its
own losses.

o Mode II. Following the request from hysteresis controller
to stop power extraction from grid converter, igq(t) is
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Fig. 2. Proposed FCS controller. (a) Overall control scheme. (b) Hysteresis controller. (c) Hystersis control signals.

being ramped to zero due to saturation of rate limiter.
The system can then be regarded as FESS with a ramping
disturbance. Therefore, a minor error of dc bus voltage

Egi o {rfi ! T Y y ' around 2.1V can be seen in Fig. 3a. As shown later, the
Eﬁo \ ,/ E:ggg / magnitude of this error can be limited by proper tuning
nggc \—I7 : 3 1100 \\ / of control parameters.

620 Ez%mpmm @ 1000 }:3 o Mode III. When ig4(t) reaches zero value, only FESS is

Ol e 3% 30 32 31 3s 3% B0 s 38 30 3 T o regulating the dc bus. Then, the dc voltage follows the

Timels Timels reference imposed by droop control.
@ ®) « Mode IV. Following the request from hysteresis controller
to restart the grid converter, igq(t) is being ramped up
. 1 v~ ! towards a value set by a dc-link voltage controller. The
2, / dynamics of system is then equivalent to dynamics of

2 // Mode II.

g ! ‘ « Mode V. The rate limiter gets unsaturated, and the grid
Y — and FESS controllers both regulate the dc bus. FESS
2002224 26 28 5 3234 36 3 is being recharged and its rotational speed is being
© recovered to nominal value. Correspondingly, dc voltage

Fig. 3. Simulation results. (a) dc voltage. (b) Speed of FESS. (c) Grid d-axis is also being restored back to its nominal value.

current i g (t).

In the following, a more detailed description of each oper-
ating mode is provided.



TABLE I
ELECTRICAL AND CONTROL PARAMETERS

Electrical parameters
dc-link capacitor Cpc 2.2 mF
line inductance Liine 3.8 mH
line resistance Riine 0.2
dc resistive load Ry, 425 Q
Grid voltage Vyrid 325V
Induction machine parameters
Stator inductance Ls 301.0 mH
Rotor inductance L, 301.0 mH
Mutual inductance Lo 289.4 mH
Stator resistance Rs 1.945 Q
Rotor resistance R, 2.3736 Q
Total leakage coefficient o 0.0756
Pair of poles p 2
Inertia J 0.42 kgm?
Grid controller parameters
Proportional term Kpg 0.3
Integral term K; 0.12
slope of rate limiter Au 2 A/s
Sampling time ts1 le-4 s
Flywheel controller parameters
Proportional term Ky 0.35
Integral term Kig 3
Droop parameter Ky 0.05
Sampling time ts2 le-4 s

Vocret 4

K; . 540 (5)
T igq ()

Grid controller

i (5)

Fig. 4. Block diagram of grid and FESS.

A. Mode I: FESS Standby + Grid VSC

In Mode I, FESS and grid controllers are both activated.
The FESS is in stand-by mode and operates at nominal speed.
Grid converter is regulating the dc-link voltage by supplying
the power for the PEV loads and losses of FESS.

By combining grid and FESS controllers, the small signal
model shown in Fig. 4 can be obtained. In the block diagram,
G1 is the gain from igq(s) to igqac(s), which was defined in
(4) and is rewritten here for clarity:

Eca

Gl=15—""
Vbe

(12)

Accordingly, G2 is the gain from T,(s) to ipg.(s), which is
derived from (8) and (9), and can be expressed as:

2w, L,
GQ_ wT T

= — 13
pLoVpe (13)

The state space equation of the whole system can then be
expressed as:
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Z 0 Kt Kq 0 —K;y
. —K, K,
Ty | | -5 /0 0
3 0 0 0 —Kig
Ty G» KprKaGa Gy KpgG1+K,Ga
Cpc Cpc Cpc Cpc
1 K; -K;yKq 0
_— Ky KprKa
T2 + 7 T 0
T3 Kig 0 0
X4 KpgG1+KprGo KprKaGa 1
Cpc Cpc Cpc
VDCref
Wref
1Ldc

(14)

where x1, 2, 3 and x4 are integrator output of FESS
controller, speed of FESS, integrator output of grid controller
and dc-link voltage, respectively.

Considering the parameters listed in Table I, following
eigenvalues are obtained:

A1 = —0.5rad/s

Ao = —1.15+¢1.05rad/s
A3 = —1.15 — ¢1.05rad/s
Ay = —117.31rad/s

15)

This system is stable as all of its eigenvalues are in the left half
plane. The slow eigenvalues A, A2, A3 correspond to FESS
inertia and droop control. On the other hand, A4 corresponds
to the theoretical bandwidth of the dc-link voltage controller.
In this mode, only A4 is excited since FESS is in stand-by.

B. Mode I1I: FESS Discharging with Ramping Disturbance

Mode 1II starts when the calculated actual energy Eg.q(t),
which is obtained by integral of the grid dc current igq.(t),
intersects with the upper dead-band. The hysteresis controller
switches its output to zero and saturates the rate limiter, and
hence the current ic4(t) decreases in a ramping manner due
to the saturation. This causes a dip in dc-link voltage, which
leads the FESS to supply the load power. Consequently, FESS
decreases its rotational speed.

In this mode, the system can be analyzed as an FESS with a
ramping disturbance from grid controller. The corresponding
control block diagram is showed in Fig. 5. The corresponding
state space equation is expressed as follows:

x 0 lgé'f[f(d — T
. 1 —
N I B o | RS
fE’4 Gao Kpf aG2 _KprZ T4
CDC CDC CDC (16)
Kif _Kide 0 VDCref
_ =Ky KprKa 0 w
J 2{/ ref
KprGa KprKaG2 1 iLd
Cpc Cpc Cpc ¢

where the z1, 22 and x4 are the same as in operating Mode
I. Using the parameters listed in Table I, the following eigen-
values are obtained:

A1 = —0.5rad/s
A2 = —15.11 4+ 45.84rad/s
A3 = —15.11 — i5.84rad/s

a7
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TABLE II
OPERATION SECTIONS IN ONE CYCLE OF SYSTEM

Operation mode System model dc voltage FESS condition
1 FESS + Grid VSC Nominal value Standby at nominal speed
1I FESS + Ramping disturbance Error Discharging
il Only FESS Droop reference Discharging
v FESS + Ramping disturbance Error Discharging to charging
\4 FESS + Grid VSC Droop reference Charging

The system has one dominant real negative eigenvalue and
two eigenvalues with real negative and imaginary parts, and
consequently it has a stable under damped response. The
eigenvalue \; = —0.5rad/s corresponds to the FESS inertia
and determines the system’s dominant time constant of 2s.

The error in the dc-link voltage during the ramping distur-
bance can be expressed in (18). According to the final value
theorem, when there is a ramping disturbance %, the dc
voltage error is given by (19).

This means that there is an error between dc voltage and
dc droop reference when rate limiter is acting. However,
the ramping periods are short (around 1s) and the error
can be controlled within specified limits. As Cpc is much
smaller than other terms, the most influential is K;r. With
the parameters in Table I, the error is around 2V, which is
acceptable. The grid benefits from ramping behavior to avoid
sudden power stress at the expense of small tracking error.

C. Mode III: Only FESS

Mode III begins at the point when the current i 4(¢) reaches
zero and the FESS provides all the power to load. The dc bus
voltage is regulated according to the droop law defined by (10).
The dc current from grid igqc(t) is zero. The corresponding
control diagram is shown in Fig. 6.

The system in this mode has the same state equation and
eigenvalues as in the Mode II but without ramping disturbance,
hence the steady state error in dc-link voltage is zero. The sys-
tem operates with the time constant of 2s which is associated
with eigenvalue —0.5rad/s.

According to the droop law (10), droop parameter K,
directly determines the dc-link voltage variation. In order to
study its influence, the dominant eigenvalues are shown in
Fig. 7 when K changes from 0.01 to 0.2 with a step of 0.01.
It is observed that, if K is too small, the dominant eigenvalue
is closer to imaginary axis which can jeopardize the stability
of system. If K  is too big, it may cause big variation of
dc-link voltage. Hence, K  is chosen as 0.05 as a trade-off:
This value causes maximum dc voltage variation around 30 V,
which is acceptable [36], [37].

D. Mode 1V: FESS Charging with Ramping Disturbance

The system switches to Mode IV when the calculated actual
energy reaches the lower dead-band. Then the i 4(t) reference
of grid controller starts to be generated by a dc-link voltage PI
controller, even though its output is ramp limited. At certain
point, when the grid current equalizes with and exceeds the
load current, the FESS stops discharging and its rotational

speed begins to increase, causing the dc-link bus to recover
back.

The dynamic characteristic in this mode is exactly the same
as Mode II and there also exists an error of around 2 V between
dc-link voltage and droop reference.

E. Mode V: FESS Charging + Grid VSC

The system moves to operating Mode V when the rate lim-
iter gets deactivated. Therefore, the system presents the same
dynamics as in Mode 1. However, the practical difference is in
a fact that FESS is not in standby mode, but is being recharged.
Therefore, it is possible to identify the slow eigenvalues in the
response of the system. After the FESS reaches its nominal
speed, the system is switched back to Mode I and the full
cycle of operation is completed.

V. EXPERIMENTAL RESULTS

In order to test the feasibility of the theoretical analysis
done, a downscaled experimental setup was builtwith the
parameters described in Table I in Microgird lab in Aalborg
university. Fig. 8 shows the experimental setup consisting of
two Danfoss 2.2kW inverters, a FESS driven by a 2.2kW
induction machine, voltage and current LEM sensors, input
L filter, and dSPACE1006 to implement the proposed control
algorithm. The switching frequency of the inverters was set
to 10 kHz. The system was connected to the grid through a
10k VA isolation transformer, and a resistive load was used
to emulate PEV loads [38]. In order to demonstrate the
performance of the system in reduced time, the experiment
was performed in seconds timescale.

A. Hysteresis Charging without DSO Command Signals

Fig. 9 represents the experimental results in one hysteresis
cycle. First, the system is operating at Mode I where dc bus
voltage is 6560 V and the speed of FESS is at nominal speed
1500 rpm. Around 3 s, the hysteresis control signal in Fig. 9d
intersects the upper band limit, hence the grid current starts to
decrease to zero, causing the drop of dc bus voltage. At the
same time, FESS reduces its rotational speed and compensates
the active power of the load. During the ramping periods, there
exists an error around 2V between dc bus voltage and the
reference set by droop.

After the igq(t) reaches zero, only FESS regulates the dc
bus and the dc voltage tracks the droop reference precisely.
At 6s, the hysteresis control signal reaches the lower band
limit and the FESS reaches its lowest speed. Also, the dc bus
voltage drops to a minimum value of around 620 V according
to the chosen value of K. Then the grid converter starts to
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Fig. 6. Block diagram of mode when only FESS is active.

be controlled by a PI controller, while the rate limiter gets
saturated again due to the dc bus voltage deviation. Therefore,
a small error of dc voltage appears again until around 8.5s
when the rate limiter runs out of saturation zone.

Finally, around 18s, the dc voltage and the FESS speed
reach their respective nominal values. One may observe
that the FESS dc current is not zero when the FESS has

Grid transformer |

Fig. 8. Laboratory prototype.
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Fig. 7. Dominant eigenvalues as a function of Ky from 0.01 to 0.2.
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FESS is operating at high speed and medium speed region.
The respective results are presented in Fig. 10 and Fig. 11,
respectively. One may observe that the current of FESS 7 p4(t)
decreases due to the field weakening when the speed is over
base speed. The results show that in each region the system can
adjust its operation and manage to automatically implement
smooth charging and discharging.

B. System Response with DSO Commands

According to the control diagram, the command signals
from DSO can shift the band limits up and down to regulate
the grid energy consumption [35]. As shown in Fig. 12, the
system is charging according to nominal hysteresis control
scheme until 28s when DSO sends a signal +2, causing
the band limit shifting up. Hence the grid controller stays
on-state until the calculated energy consumption reaches the
updated upper band limit. As a result, the energy consumption
increases. Accordingly, at around 48s, DSO sends a signal -
2, leading to the band limit shifting down, and then the grid
controller transfers to off-state earlier, which means the load
consumption decreases.

C. System Response when the Grid Power is Lost

As is shown in Fig. 13, when the the grid power is lost, grid
current steps to zero and causes a dip of dc bus voltage. Then
the FESS takes charge of dc bus regulation with fast response,
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Fig. 11. Experimental results when FESS runs at medium speed region:
1200 — 1800 rpm. (a)dc voltage. (b) Speed of FESS. (c) dc current. (d)
Hysteresis control signals without DSO reference. () igq(t), iqq(t) and
reference. (f) ipq(t), irq(t) and reference.

and supplies all the active power for the load by decreasing
its speed, and the dc bus changes according to the droop law.

D. System Response when the Load is Disconnected

As is shown in Fig. 14, when the load is disconnected
suddenly around 2s, load current steps to zero and causes a
increase of dc bus voltage in the transient. Then the dc current
of grid converter will decrease but limited by rate limiter,
which causes the FESS to increase its speed to absorb the
power from grid converter, and the dc bus voltage is regulated
according to the droop law with the change of speed. At the
point when grid current equalizes with the current caused by
FESS losses, the FESS starts to decrease its speed. Finally the
FESS reaches its nominal speed, the dc bus also returns back
to the nominal value and grid converter supplies the active
power for FESS losses and regulates the dc bus.

VI. CONCLUSION

This paper carried out theoretical and experimental valida-
tion of a hysteresis-type active power support scheme from
a FCS equipped with FESS. The control strategy employs a
droop-based DBS control method to avoid digital commu-
nication between grid and FESS converters. The proposed
algorithm provides a good response to system-level signals
from DSO while not interrupting the predefined charging
profiles of PEV battery. In order to analyze the characteristics
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of the system, a small signal model has been assembled to
explain its dynamics in each operating mode. It is shown that
the grid and FESS controllers realize the power balancing and
compensation in a coordinated and stable manner. Finally,
experimental results on a reduced scale lab prototype have
been presented to verify the feasibility of this control method.
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