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ABSTRACT 

We investigate an MHD couple stress liquid due to a perforated sheet undergoing linear 

stretching with radiation. The liquid is initially at rest with its activity is restricted by pulling the 

two sheet ends with parallel and identical forces. The consequential movement of the or else 

quiescent fluid is consequently generated exclusively by the stirring plate that develops a linearly 

varied speed with the distance from the slit. In addition to fluid flow, heat transfer with two cases 

of different boundary conditions from the sheet is considered, the first with prescribed surface 

temperature and, the second with prescribed heat flux. The arising set of non-linear coupled 

nonlinear partial differential equations is rehabilitated into non-linear ordinary differential 

equations and then exact expressions are derived for velocity and by means of a power series 

method with Kummer’s confluent hyper-geometric functions for temperature.  
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Nomenclature  

A, B, D          constants  

Cp                   constant pressure [W kg-1K-1] 

 c  stretching  rate  [s-1] 

C  
0

2

c



 
 
 

  couple stress parameter  

C1  streamline constants  

f  similarity variable 

1F1  (= F[a, b, z]) Kummers’ expression 

2F1  (= F[a, b, c, z ]) Kummers’ expression 

g    
w

T T

T T





 
 

 
  for the PHF case 

H0  magnetic field [w m-2 ] 

k  conductivity [W kg-1 K-1] 

k*  mean absorption coefficient [m-2 ] 

l  length [m] 

M                   0H
c





 
  
 

  Hartmann number also called Chandrasekhar number  

NI   
*

p

Q

c C

 
 
 
 

 heat source/sink parameter 

NR  

316 *

3 *

T

k k

 
 
 
 

  radiation number 

xNu   
( )

w

w

xq

k T T

 
 

 
 Nusselt number 
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Pr  




 
 
 

  Prandtl number 

qr  radiative heat flux  [ W kg-1 m-1 ] 

qw   local heat flux at the wall 

Q   2M   Chandrasekhar number 

Qs  heat source [W kg-1 K-1m-2] 

Rex   wxU



 
 
 

 local Reynolds number 

Rm  
2

m

c l



 
 
 

  magnetic Reynolds number 

s   wall temperature parameter 

T   temperature [K] 

T∞  far away from the sheet [K] 

Tw   wall (sheet) temperature [K] 

wU   stretching velocity of the sheet 

u   velocity component beside the sheet [m s-1] 

v   velocity component normal to the sheet [m s-1] 

x   x-coordinate along the sheet [m] 

y   y-coordinate normal to the sheet [m] 

Greek symbols 

α   (=
𝑘

𝜌𝐶𝑃
)

 

thermal diffusivity [m2 s-1]          


  

thickness   of  boundary layer 

   1 c





 
  
   

velocity boundary layer thickness 
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T                    1T
c




 
  
 

 thickness of thermal boundary layer 

1


  
dimensionless velocity boundary layer thickness 

 

1T                    
dimensionless thermal boundary layer thickness  

η   similarity variable 

0                    
material constant for the couple stress fluid 

µ   limiting viscosity [kg m-1s-1] 

   




 
 
 

kinematic viscosity [m2 s-1] 

 m  magnetic permeability  

    
0



 
 
 

couple stress viscosity [m2 s-1] 

ρ   
density [kg m-3] 

ψ   
stream function [m2 s-1] 

σ   electrical conductivity [mho m-1] 

*σ   Stefan-Boltzmann constant 

ξ   change of variable 

wτ   
wall shearing stress [m2 s-1] 

θ   
w

T T

T T





 
 

     

for the PST case 
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1. INTRODUCTION   

           The theoretical fluid mechanics phenomena involving steady/unsteady laminar boundary 

layers be of large hypothetical furthermore convenient importance. The present problem has 

wide physical application in extrusion impulsively/linearly/non-linear stretching process like 

condensation process of aerodynamic development, cooling method of tinny sheet and in the 

glass, polymers and there are also several applications in biofluid dynamics, hydronautics and 

manufacturing(see Fisher [8]). Couple stress liquids over a linear stretching sheet has established 

significant concentration since of their widespread applications in the field of metallurgy. The 

developed of polymer fibers, by means of the dissolve whirling procedure, involves the extrusion 

of molten fibre through an orifice. Similar flows involving magnetic fields 

(magnetohydrodynamic flow) are also extremely vital technologically and applications in special 

areas of interest such as petroleum production and metallurgical processes can be found. 

Together to the flow, it is found also that the properties of the end products depend strongly lying 

on the speed of cooling implicated in these processes. Magnetic fields have been used already in 

the process of refinement of molten metals from nonmetallic inclusions, and Sarpakaya [19] was 

the initial examiner to investigate the MHD flows of a non-Newtonian liquid. 

A widespread variety of mathematical models has been developed to reproduce the different 

hydrodynamic/hydromagnetic behavior of these non-Newtonian liquids. Expressive expositions 

of viscoelastic fluid models have been investigated by Joseph [10]. Examples of such models are 

the Rivlin–Ericksen second order model [15] and Siddappa and Khapate [21] and the Oldroyd 

model [30] see also Bhatnagar [3] where the flow of an Oldroyd-B liquid is considered, 

occupying the space over an elastic plate, due to the stretching of the sheet in the presence of a 

constant free-stream velocity. Moreover, the Johnson–Seagalman model , the upper convected 
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Maxwell model, see Rao [25],  Rao and Rajgopal [26] and the Walters’ liquid B model [29], 

Siddheshwar and Mahabaleshwar [20] and Mastroberardino and Mahabaleshwar [13] have been 

proposed. Recently, Maxwell model and Oldroyd-B model have been used to study the flow of 

viscoelastic liquids on top of stretching and non stretching sheets but with no heat transfer effects 

involved. Together steady and unsteady flows have been presented expansively in a different 

variety of geometries using a wide spectrum of analytical, semi-analytical and numerical 

methods (see Mahabaleshwar [14], Siddheshwar and Mahabaleshwar [2005], Andersson et al. 

[2], Turkyilmazoglu and Pop[24] and Xu et al [31]) . 

The theory of Boussinesq- Stokes suspension that displays the effect of couple stress and the 

constitutive equations for couple stress liquids is due to Stokes (1966). A imperative group of 

pupils of non-Newtonian liquid model is the couple stress replica which is a vigorous models for 

definite polymeric materials. Sakiadis [15-17] was the first researcher that discusses the 

boundary layer flow theoretically, numerically and experimentally and then his theory was 

extensive further by Crane [3]. He pointed out that in the polymer industry it is sometimes 

essential to consider a stretching plate. An analytical form was presented by Crane [3]. Crane 

flow was investigated by Gupta and Gupta [11] for the heat and mass transfer over a linear 

stretching plate in the being there of suction/injection issuing from a thin slit. A non-isothermal 

moving sheet was dealt with and the temperature and concentration distribution profiles for that 

situation were obtained. Carragher and Crane [5] analyzed the heat transfer owing to a 

continuous stretching plate. Pavlov [25] obtainable an correct resemblance explanation of the 

magnetohydrodynamics. The heat and mass transfer over a stretching sheet with or without 

suction/blowing and with/without magnetic field is studied by other researchers (Fox et al. [8], 

Chen and Char [6], Mahabaleshwar [14], etc.) by taking different situations. 
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All the above mentioned researchers restricted their analyses to viscous flows. Many unexplored 

aspects of the linear stretching sheet problem are unearthed by the present study which is a 

overview of the works of Crane [7] and Pavlov [25]. Motivated by every person these 

investigates we intend to examine an MHD couple stress fluid due to a perforated sheet 

undergoing linear stretching with heat transfer. Furthermore for MHD flows, the effects of heat 

source/sink, radiation, wall temperature and magnetic field on couple stress fluid flow over a 

stretching sheet are discussed. Presents consequences have potential scientific applications in 

fluid based systems concerning stretchable supplies, in polymer extrusion process and similar 

problems. 

2.      MATHEMATICAL FORMULATION AND SOLUTION 

          Let us consider an MHD couple stress liqid due to a perforated sheet undergoing linear 

stretching with radiation. The two-dimensional flow of the fluid is confined to the half space y > 

0 above the sheet as shown in Fig.1.  The plate is being stretched with a speed proportional to the 

distance from the origin, at x = 0, by applying two equal and opposite forces along its x-axis. The 

Reynolds number, Rm, is assumed small (Rm << 1) which implies that negligible magnetic field is 

induced in comparison to the external one. The low magnetic Reynolds number approximation 

results as a linear damping Lorentz force expression in the linear momentum boundary layer 

equation. As the cold or the hot fluid extrudes from the slit, heat is transferred volumetrically and 

by radiation in addition to the usual conduction and convection mechanisms.  

 

2.1 Governing equations 

The continuity equation, linear momentum boundary layer expressions for a steady liquid flow 

past a stretching plate are given by Stokes [22] where the couple stress fluid model is based on 

the presumption that the fluent medium can sustain couple stresses. The assumptions are such 
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that Siddheshwar and Mahabaleshwar [20] facilitate the use of laminar boundary layer 

approximations. The leading expressions for conservation of mass, linear  momentum and energy 

equation with the couple stress term, the Lorentz force term, the heat resource/sink and the 

radiation terms are given by: 

0
u v

x y

 
 

 
,                                                                                                    (1) 

22 4

0

2 4

oHu u u u
u v u

x y y y

 


 

   
   

   
,                                                                          (2) 

2

2

1
( ) ,s r

p p

Q qT T T
u v T T

x y y C C y


 


  
    

   
                                                       (3) 

where, u and v represents the velocities components in the x and y directions, respectively, T  

represents temperature, 𝜂0

 

is the material constant of the couple stress fluid,

 

  the density,    

the electrical conductivity,   the thermal diffusivity, sQ  is the volumetric heat generation (

0sQ  ) or absorption ( 0sQ  ) source, and Cp is the specific heat. The pressure gradient term as 

usual is negligible in these problems. By using the Rosseland approximation for radiation (see 

Brewster [4], Siddheshwar and Mahabaleshwar [2005],), the radiative heat flux 
rq  can be 

expressed as: 

  
 

y

T

k
qr






4

*3

*4
 .                                                                                     (4) 

 Using Taylor series expansions about 
T the quantity  4T  can be expressed as:  

     

22344 64 TTTTTTTT .                                                                              (5) 
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Omitting higher-order expressions of ( TT ) in the above expression away from the first 

degree,  4T  can be approximated by:  

.43 344 TTTT                                                                                      (6) 

By employing  Eqs. (4), (5) and (6), Eq. (3) becomes:  

3 2

2

16 * *
( ).

3 *p p

TT T T Q
u v T T

x y C k y C




 




   
     

    

                                                         (7) 

The velocity at the stretching sheet is linear in x and the boundary conditions related to the flow 

problem are 

 

       

   

2

2

2

2

,0 , ,0 0, is finite , ,0

, 0, 0, 0, , ,

x w

y

u
u x U x cx v x T T x

y

u
u x u T x T

y



   




     



                                                             (8) 

where, c is a specified rate of stretching constant with dimensions of inverse time, such that the 

position of a material point particle on the stretching sheet advances exponentially in time.  

PRESCRIBED SURFACE TEMPERATURE (PST) and PRESCRIBED HEAT FLUX 

(PHF)  

The prescribed power law surface temperature, Tw, is considered to be a power of x in the form 

    at    0

as

s

w

x
T T T A y

l

T T y





 
     

 
 

 .                                                          (9)  
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Moreover, the power law heat flux, qw, on the wall surface is considered to be a power of x in the 

form 

     
at 0

as

s

w

T x
k q D y

y l

T T y

  
     

  


 

 .                                                                   (10) 

2.2 SOLUTION OF THE LINEAR MOMENTUM EQUATION 

The fluid flow is caused solely by the stretching of the sheet, with the free stream velocity being 

zero. Equations (1) and (2) admit self-similar solution of the form: 

 

1

2

( ), v ( ), ( ), ,
c

u c x f c f x c f y       


 
    

 
                                              (11) 

where, η denotes the derivative with respect to η. The physical stream function is related to the 

axial and transverse velocities components (u, v) by the standard definition u = ∂ψ/∂y, v = 

−∂ψ/∂x. Clearly u  and v satisfy Eq. (1) identically, and by substituting these new variables in 

Eq. (2), we have 

 
2

5 0,Cf f f f f Qf    
     
  

                                                                               (12) 

where, 
c

C





   is the dimensionless couple stress parameter,

   
  is the couple stress viscosity 

and 
2
0H

Q
c




  is the Chandrasekhar number. Equation (12) is a non-linear equation with only 

two terms being linear. The dimensionless boundary conditions for  f    can be obtained from 

Eqs. (8) after applying the transformations of Eqs. (11) as: 
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( ) 0, ( ) 1, a t 0

( ) 0, ( ) 0, ( ) 0, a s .

f f

f f f



  

  

   

  

   
                                                             (13) 

Investigating the nature of )(ηf  at 0η  and as ,   seems appropriate to assume the 

following form for )(ηf : 

1 1( ) [ ]f A B Exp    .                                                                                    (14) 

With the help of the boundary conditions in Eqs. (13), A1 and B1 can be calculated and the 

solution turns out to be (see Crane [7], Pavlov [25] and Siddheshwar & Mahabaleshwar [20] for 

a similar analysis): 

   
1

, 0,
e

f


 



                                                                                                 (15) 

where, the constant   is determined from the solution of biquadratic equation:  

   
2

2 2 1 0C Q     ,                                                                                                         (16) 

Equation (16) is biquadratic and can have four solutions,  which it follows that: 

 
 1 1 4 1

0
2

C Q

C


  
  .                                                                               (17) 

In this case, there is only one positive root to equation.  

2.3 SOLUTION OF THE HEAT EQUATION UNDER PST 

         In the case of PST, the non-dimensional temperature )(ηθ  is defined as 










TT

TT
ηθ

w

)(

 ,                                                                                 (18) 

where  



12 
 

 ηθ
l

x
ATT

s









  , and 

s

w
l

x
ATT 








  .                                                   (19) 

Substitution of Eqs. (18) and (19) in the energy equation, Eq. (7), leads to the subsequent 

equation:  

0)())(Pr()(Pr)()()1(    IR NfsfN ,                                                    (20) 

where, NR is the radiation number, Pr is the Prandtl number, and NI is the heat source/sink 

parameter.  

 The dimensionless thermal boundary conditions of   can be obtained from Eqs. (9) and (18) as                      

1 at 0

0 as

 

 

  


  
.                                                         (21) 

The boundary conditions of Eqs. (21) are linear in θ  and have one exact solution in expressions 

of the Kummer’s confluent hypergeometric function F[a, b, c z] = 2F1  (see Abramowitz and 

Stegun [1], Chapter 13) by using the transformation: 

Re     ,                                                                                                                                (22) 

 where, R =
2β

Pr
.                            

Substituting Eq. (22) into Eq. (20), we get 

       (1 ) 4(1 ) 0I
R R

RN
N N R s       



 
        

 
,                              (23) 

where, subscripts ξ  denotes differentiation 

The boundary conditions of Eq. (21), in terms of ξ  translate to  

  1 Rξθ    and    0)0( θ .                                                                     (24) 
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A solution of the homogeneous Eq. (23) by power series method is assumed as  
0

k i

i

i

   






 , 

where, 'i s are arbitrary constants and k is the constant to be determined. The assumed solution 

is substituted in Eq. (23) and the coefficient of each degree term in   is equated to zero. The 

solution of Eq. (23) fulfilling the conditions (24) interms of Kummer’s function (see Abramowitz 

and Stegun [1]) is: 

1 2
1 1 2

1 1
2

1 1 2
1 1

2
, 1,

2
( ) ,

2
, 1,

2

k k
k k s

F k

k k sR
F k R




 

 
 
 

   
             

 

                                                                (25) 

where , 
 1 2

Pr

1 R

k
N

 
    

  and 
   

2

2 2 2

Pr Pr
4

1 1
I

R R

k N
N N 

   
           

 

The solution of Eq. (25) can be written in terms of   as      

1 21 2
2

1 2
2

21 , 1, Re
12 2

( )
21 , 1,

1 2

k k sk k
F k

e
k k s

F k R


 

 

 
 
 
 
 

    
   

  
   

  
 

 .                                             (26) 

The non dimensional wall temperature gradient as derived from Eq. (26) is  

  

1 1 2
1 2

1 2 1 2

1 1 22
1 2

1
, 2,

2 2
(0) .

22 1 2
, 1,

2

k k s
F k R

k k s k kR

k k sk
F k R




 

    
                             

                                  (27) 

The expressions in Eq. (26) and Eq. (27) are presented for several values of the parameters, C, Q, 

NR, NI, Pr, and s and the results are discussed after the next section.  
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2.4  SOLUTION OF THE HEAT EQUATION UNDER PHF 

In the case of a wall heat flux boundary condition is given, a non-dimensional temperature )(g

can be defined as: 

 at 0 and

as

s

s

T TT x
k D y g

y l D x

k l c

T T y








  
   

    
 
 

 
              

                                               (28) 

where, 

 .
s

D x
T T g

k l c




 
   

 
                                                                                                                                                                        

(29)       

For clarity reasons, the symbol  g   is selected in Eq. (28) for the notation of the temperature 

variable for the prescribed wall heat flux case, although it corresponds to the same physical 

temperature as the variable )(ηθ  defined for the PST case in Eq. (18). Substitution of Eq. (28) in 

the energy equation, Eq. (7), leads to the subsequent equation: 

          (1 ) Pr Pr 0.R IN g f g s f N g                                                            (30)      

The thermal boundary conditions can be transformed in terms of g from Eqs. (10) and (28) as:  

 
1)0( g  and    0)( g ,                                                                                          (31)  

Substituting Eq. (22) into Eqs.  (30) and (31), we get  
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       (1 ) 4(1 ) 0I
R R

RN
N g N R g s g     



 
        

 
 ,                                        (32)




R
Rg

1
)(   and 0)0( g ,                                                                               (33)  

where,   subscripts denotes differentiation. Equation (32) is a confluent hypergeometric 

equation and the solution for g satisfying Eq. (33) is obtained in terms of Kummer’s function 

(see Abramowitz and Stegun [1]) as: 

 
 

1 2

1

1 11 2 1 2 1 2
1 2 1 2

12 1 2
1 2

2 21
, 1, , 1,

2 2 2

2-
, 1, ,

R 2

k k

k k k k s k k s
g F k R R F k R

k k s
F k









 
 
 

              
            

       

    
    

   

               (34) 

 where, the function F  satisfies the relationship    1

1 , , 1, 1,
a

F a b z F a b z
b

    and the other 

terms are as defined earlier. In terms of η , the expression for g is  

 

 

1

1 11 2 1 2 1 2
1 2 1 2

11 2 1 2
1 2

2 21
, 1, , 1,

2 2 2

2
Exp - , 1, .

2 2

k k k k s k k s
g F k R R F k R

k k k k s
F k R Exp




  



            
           

     

       
      

    

                  (35)    

The wall temperature Tw is obtained from Eq. (29) as 

(0)

s

w

D x
T T g

k l c




 
   

 
.                                                                     (36)                   

and the local heat flux can be expressed as    

  0

(0)

s

w

y

T c x
q k k A g

x l

   
      

   
.                                                                (37)                        
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The substantial quantity of interest is the local skin friction coefficient fC  and local Nusselt 

number xNu can be found from the subsequent definition:  

w
x

w

qx
Nu

k T T

 
  

 
     ,                                                                                                                                                                                             

(38)                                       

where wq is the local heat flux can be expressed as    

0

(0)

s

w

y

T c x
q k k A

y l





   
      

   
.                                                                                  (39)                

Hence using Eq. (11), we get 

 
 

 

Re 0 PST case

Re 0 PHF case

x

x

x

Nu
g






 



                                                                                       (40)                                              

where, Re w
x

xU


  is the local Reynolds number, and the local skin friction coefficient fC can 

be expressed by: 

 Re 0f xC f                                                                                                                       (41)                          

3.          RESULTS AND DISCUSSION 

The consequences from the analytical solutions of the velocity and temperature in the 

sheet are obtainable for all independent parameters of the couple stress fluid over the linear sheet, 

as derived by Eqs. (15), (26), and (35). The variations of velocity components along and in the 

normal direction of the sheet are presented at Figs. 2 and 3 for a range of values of Q and C, the 

Chandrasekhar number and the couple stress parameter, respectively. Moreover, distributions of 

temperature are presented at Figs. 5 to 10 for a range of values of Pr, NR, s, and NI, the Prandtl 
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and radiation numbers, and the wall temperature and volumetric heat source/sink parameters, 

respectively, as well as C and Q.  

Figures 2 to 3 illustrate the two velocity profile distributions,
 

 f  and
 
 f  i.e. the 

velocity components u and v at the longitudinal (x) and transverse (y) directions, respectively, 

versus   for various values of the Chandrasekhar number Q for the constant value of C = 0.1 

(Fig. 2) and various values of the couple stress parameter C for the constant value of Q = 1 (Fig. 

3). Since the present study is a generalization of the classical works of Crane [7] and Pavlov 

(1974) their solutions are also presented in both figures. The present results approach 

asymptotically the results of Crane [7] as 0Q and 0C and the results of Pavlov [25] as

0C , where the asymptotic flow case of C = 0 corresponds to the Blasius solution for the flow 

over a flat plate. It is observed that both velocity components (transverse and longitudinal) are 

decreased by the increase of Q and C because the flow is decelerated. In the case of the magnetic 

field increase, the rate of transport decreases because of the flow breaking due to the Lorentz 

force action that opposes any fluid motion as Q increases. Moreover, the fluid viscosity increases 

and stronger force is needed to retain the same fluid flow as C increases. Since in the present 

work the driving force is kept constant, C increase corresponds to flow deceleration in a similar 

to the magnetic field manner.    

Based on the stream function definition, Eq. (11), and the streamline derivation as 

described in Kumaran and Ramanaiah [12], the streamline patters for the case Q = 1 and C = 0.1 

are presented in Fig. 4a, while the streamlines for  𝜓 = 1 are drawn in Figs. 4b and c for 

different values of C and Q, respectively. At large distances, all streamlines are found to 

confined near the axis as the sheet is shrunk and as the rate of shrinking is observed to be almost 
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independent of the C and Q magnitude for large 𝜉. This is due to the linear dependence of both 

parameters to the velocity, thus their influence is proportional to the small velocity magnitude. 

Both parameters, Q and C, have similar effect on the flow pattern as their increase result in the 

momentum boundary layer thickening, Figs. 4b and c, and thus most of the of the fluid is flowing 

closer to the x-axis an effect close to the so called Hartmann breaking, where the increase of the 

magnetic field results in narrowing the Hartmann boundary layers in the walls normal to the 

magnetic field. Similar to the thickness of the boundary layer, the local skin friction coefficient 

fC
 
is also reduced by the increase of the magnitude of C and Q as can be seen in Table 1 for the 

normalized quantity 
𝐶𝑓

√𝑅𝑒𝑥
= 𝑓𝜂𝜂(0) according to Eq. (41).  

Together to the flow features of the couple stress fluid, heat transfer from the sheet is also 

important. The effect of the Prandtl number in the temperature distribution of the sheet is 

presented in Fig. 5 for both cases of the different thermal boundary conditions studied here, the 

PST and the PHF cases with the solid lines and the dotted lines, respectively. The solution 

derived by Crane (1970) is also plotted for comparison. The temperature distributions, )(ηθ  for 

the PST case and g( η ) for the PHF one, are presented in Fig. 5 as Pr increases from 1 to 5 while 

all the other parameters are kept constant (C = 0.1, Q = 1, NR = 1, NI = -1 and s = -1). The 

increase of Prandtl number corresponds to slower rates of thermal diffusion and higher 

convection rates and consequently the thermal boundary layer thickness is decreased. The 

temperature is decreased faster as Pr increases and asymptotically approaches to zero in the free 

stream region for smaller 𝜂. The rate of temperature reduction, i.e. the heat transfer rate, is found 

to be higher for the PST case, however, the asymptotic temperature for large 𝜂 is approached 

faster for the PHF case. The reason for the turn down in the heat transfer lies in the fact that 



19 
 

increasing values of Pr reduces thermal diffusivity thereby reducing the heat diffused away from 

the heated surface and in consequence increases the temperature gradient at the surface. This 

phenomenon leads to a smaller energy ability that reduces the thermal boundary layer thickness. 

The domination of convection heat transfer as Pr increases is also demonstrated by the increase 

of 𝜃𝜂(0) in Table 2, i.e. the local Nusselt number, Nux, normalized by the local Reynolds number 

according to Eq. (40).  

In contrast to the increase of the Prandtl number, temperature distribution is decreased 

slower as the radiation number, NR, is increased and thus the thermal diffusivity due to radiation 

of the medium increases for both the PST and PHF cases.  

Fig. 6 is showed effect of radiation NR is increased from 0 to 4 while all the other 

parameters are kept constant (C = 0.1, Q = 1, Pr = 1, NI = -1 and s = -1). As thermal diffusion is 

getting more important with the increase of NR, the thickness of the thermal boundary layer is 

increased and the bulk temperature of the fluid is getting higher. Thus, it turns out that the value 

of NR should be kept small in order the temperature of the system to be regulated. Moreover, in 

difference to the Pr number, the radiation number have only a minor effect on the maximum 

temperature of the PHF case since the rate of heat flow is affected mostly by the thermal 

conductivity of the medium. The secondary effect of the radiation number in the heat transfer is 

also obvious from the temperature distributions of both the PST and PHF cases that have similar 

reduction rates, almost collapse as 𝜂 increases, and approach their asymptotical values at around 

the same 𝜂 as well. The rate of reduction of convective heat transfer due to the increase of NR is 

also shown in the decreased values of the local Nusselt number that is presented in Table 2.   
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The effect of s, the wall temperature parameter, in the temperature distribution is found to 

be only secondary and mostly local as it is varied from -3 to 3 when all the other parameters are 

kept constant (C = 0.1, Q = 1, Pr = 1, NI = -1 and NR = 1) as it is shown in Fig. 7. For the PHF 

case, the influence of s is important only for  𝜂 < 1 while as 𝜂 is getting larger minor influence 

from the boundary conditions are observed. In contrast, s effect is more extensive and influences 

the temperature distribution in all 𝜂 in the PST case, with its stronger influence to be close to the 

wall as it is expected. For the PST case, it is found that the increase of s increase the rate of 

temperature reduction in a similar but slower way as the Pr number does for small 𝜂, while wall 

parameter effect is minimum in the asymptotic temperature for large 𝜂. As s is increased, the 

temperature gradient  𝜃𝜂(0) as  𝜂 → 0 is increased, Table 2, which corresponds to the local 

Nusselt number increase. Thus, convection heat transfer may be influenced by the thermal 

boundary conditions at the wall, i.e. the possible injection of heat from the boundary into the 

bulk of the fluid.    

 Figure 8 illustrates the effect of the heat source/sink parameter, NI, in the temperature 

distribution for the PST and PHF cases as varied in the range between -2 and 2 when all the 

other parameters are kept constant (C = 0.1, Q = 1, Pr = 1, NR = 1 and s = -1). Following its 

definition, NI > 0 corresponds to a heat source (generation of thermal energy) and NI < 0 to a 

heat sink (destruction of thermal energy). For heat source increase, NI > 0, all temperature 

profiles from the two cases of PST and PHF are markedly elevated due to the volumetric heat 

generation that increases the bulk temperature of the fluid independently of how strong 

convection heat transfer could be, while the reverse behavior is clearly observed for the heat 

sink effect as NI < 0, where heat is removed faster and the temperature distribution is reduced. 
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Since the local Nusselt number is connected to the slope of the temperature as 𝜂 → 0 , 

convection heat transfer is found from Table 2 to increase as NI  < 0.   

The effects from the flow parameters Q and C to the heat transfer are also important and 

presented at Figs. 9 and 10, respectively. Figure 9 illustrates the effect of Chandrasekhar number 

Q in the distribution of the temperature profiles for the PST and PHF cases for values between 0 

and 4 when all the other parameters are kept constant (C = 0.1, Pr = 1, s = -1, NI = -1 and NR = 

1). As usually in magnetoconvection, the increase of magnetic field magnitude, here the increase 

of Q, favors conduction over convection heat transfer because of the flow breaking action of the 

Lorentz force. Thus, the rate of heat transfer is reduced in the fluid and its bulk temperature is 

increased as Q increases.  

Finally, the effect of C increase in the temperature distribution of the PST and PHF cases 

for the range of the couple stress parameter C between 0 and 0.3 when all the other parameters 

are also kept constant (Q = 1, Pr = 1, s = -1, NI = -1 and NR = 1) is shown in Fig. 10. The 

temperature distribution in the PST case is less affected by the increase of C, in contrast to the 

temperature distribution in the PHF case, however, most of the influence is concentrated as small 

η. As it is observed, similar to the Chandrasekhar number, the temperature of the fluid bulk is 

increased as the value of C increases and conduction heat transfer is favored. This means that as 

C is increased the thickness of the thermal boundary layer is increased and consequently, the heat 

transfer is reduced as the local Nusselt number (the value of  𝜃𝜂(0) in Table 2) is reduced.  

4. Conclusions 

The flow and heat transfer of an incompressible MHD couple stress fluid due to a stretching 

sheet are presented for various independent parameters as the couple stress parameter, the 

Chandrasekhar number, the Prandtl number, the wall temperature parameter, the heat/sink 

parameters and the radiation parameter. The exact solutions of velocity and temperature 
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distributions of the couple stress fluid are derived by the solution of the governing non-linear 

ordinary differential equations and by using a power series method with Kummer’s confluent 

hyper-geometric functions. Heat transfer with two cases of different boundary conditions from 

the sheet is considered, the first with prescribed surface temperature and, the second with 

prescribed heat flux. The main conclusions derived from the present investigation can be listed 

as follows: 

 The temperature increases as the Chandrasekhar number Q and the heat source/sink 

NI  parameter increases, but it decreases as the Prandtl number Pr increases. 

 Heat source/sink and radiation number increase the thermal boundary-layer thickness.  

 Increasing radiation parameter (NR) heat diffusion is favored and the temperature 

increases through the laminar boundary layer. 

 The PHF boundary condition is better suited for effective cooling of the linear 

stretching sheet. 

 The temperature distributions of the PHF cases are qualitatively similar to that of the 

PST cases, but quantitatively have reduced magnitude. 

Presents consequences have potential scientific applications in fluid based systems concerning 

stretchable supplies, in polymer extrusion process and similar problems, especially in couple 

stress fluids. 
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Figure 2: Plot of axial   f   velocity and transverse velocity   f  versus    

for  different values of Chandrasekhar number Q  with C = 0.1.  

  

   ,f f  
 

  

 Q = 0, 1, 2, 3, 

4 
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Figure 3: Plot of axial velocity and transverse velocity versus   for different values of couple 

stress parameter  C  with Q =1. 

 

 C = 0, 0.1, 0.2, 0.25, 0.3  

  

   ,f f  
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Figure 4a:  Streamlines  *

1( , ) Constant-C     for different values of C1when Q =1 and C = 0.1 

 
 

                

Figure 4b:  Streamlines  
*( , ) 1     for different values of C when Q =1. 

 C1= 0, 1, 2, 3, 4, 5 
  

*

 

 C = 0, 0.01, 0.02, 0.03, 0.1 

*  

  
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Figure 4c:  Streamlines  
*( , ) 1     for different values of Q when C =0.1. 

 

 

 

 

  

 Q = 0, 0.5, 1, 2 
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Figure 5:Variation of the non-dimensional temperature  with   the transformation  

co-ordinate normal to the surface for different values of Prandtl number Pr for the 

 cases  PST and PHF. 

  ,
 g   

  
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 Pr = 1, 2, 3, 4, 5 
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Figure 6:Variation of the non-dimensional temperature  with   the transformation  

co-ordinate normal to the surface for different values of radiation number Nr for the  

cases  PST and PHF. 
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Figure 7:Variation of the non-dimensional temperature  with   the transformation  

co-ordinate     normal to the surface for different values of wall temperature parameter 

 s  for the cases  PST and PHF. 

  ,
 g   

 s = -3,-2,-1, 0, 1, 2, 3 

C  = 0.1 
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Q = 1 
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 Figure 8:Variation of the non-dimensional temperature  with   the transformation  

co-ordinate  normal to the surface for different values of heat source/sink parameter  

 NI   for the  cases  PST and PHF. 

 NI  = -2,-1, 0, .1, 2 

  

C  = 0.1 

Pr =1 

s = -1 

Q = 1 
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Figure 9:Variation of the non-dimensional temperature  with   the transformation  

co-ordinate normal to the surface for different values of Chandrasekhar number Q  

or the cases  PST and PHF. 
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Figure 10:Variation of the non-dimensional temperature  with   the transformation  

co-ordinate normal to the surface for different values of couple stress parameter C 

 for the cases  PST and PHF. 

 

  

 C = 0, 0.1, 0.2, 0.25, 0.3  

  ,
 g   

  

Q  = 1 

Pr =1 

s = -1 

NI  = -1 

Nr  = 1 
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Table 1: Illustrating the variation of   0f 
 
 with C and Q for the flow over stretching sheet. 

C = 0.01 Q  0f  

 0 

1 

2 

3 

4 

5 

9.94936 

9.89739 

9.84399 

9.8176 

9.7891 

9.7325 

Q = 1 C  0f  

 0 

0.1 

0.01 

0.05 

1.41421 

2.68999 

4.21260 

9.89739 
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Table 2:  Values of wall temperature gradient -  0  (PST case) and wall temperature                            

g(0) (PHF case) for  different values of  C, NR , Pr, Q ,s and IN . 

 

C 

 

NR 

 

Pr  

 

Q 

 

IN  

 

s 

 

-  0  

 

g(0) 

0.0 

0.01 

0.1 

 

1.0 

 

2.0 

 

1.0 

 

0.05 

 

2.0 

1.51787 

1.23460 

1.18187 

0.674689 

0.519563 

0.508058 

 

0.1 

1.0 

3.0 

5.0 

 

4.0 

 

1.0 

 

0.05 

 

2.0 

2.03623 

1.83466 

1.78131 

0.516917 

0.519868 

0.518986 

 

0.1 

 

2.0 

2.0 

4.0 

6.0 

 

1.0 

 

0.05 

 

2.0 

1.17529 

1.89900 

2.40763 

0.783120 

0.519659 

0.435544 

 

0.1 

 

2.0 

 

4.0 

0.0 

2.0 

3.0 

 

0.05 

 

2.0 

1.83706 

1.98990 

2.02238 

0.522181 

0.511978 

0.477179 

 

0.1 

 

2.0 

 

4.0 

 

1.0 

   -0.05 

  0.0 

    0.05   

 

2.0 

1.97488 

1.94252 

1.89000 

0.478315 

0.478134 

0.475327 

 

0.1 

 

2.0 

 

4.0 

 

1.0 

   

 0.05 

  

1.0 

2.0 

3.0 

0.89567 

1.89000 

1.92658 

0.39876 

0.475327 

0.53267 

     

 


