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Suppose we are given a sequence

a0, a1, a2, . . .

defined so that we only know that the an are rational numbers.

However, it appears as if the an are actually nonegative integers.
How would we prove this? There are two standard techniques.

1. Find a recursion for the an and use induction.

2. Find a combinatorial interpretation for the an. In other words,
find sets S0,S1, S2, . . . such that, for all n,

an = #Sn

where # denotes cardinality.
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Let N = {0, 1, 2, . . .}.

Suppose n, k ∈ N with 0 ≤ k ≤ n. Define
the corresponding binomial coefficient by(

n

k

)
=

n!

k!(n − k)!
.

Ex. We have (
4

2

)
=

4!

2!2!
=

4 · 3
2 · 1

= 6.

Note that it is not clear from this definition that
(n
k

)
is an integer.

Proposition

The binomial coefficients satisfy
(n
0

)
=
(n
n

)
= 1 and, for 0 < k < n,(

n

k

)
=

(
n − 1

k

)
+

(
n − 1

k − 1

)
.

Since the sum of two integers is an integer, induction on n gives:

Corollary

For all 0 ≤ k ≤ n we have
(n
k

)
∈ N.
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(a) Subsets.

Let

Sn,k = {S : S is a k-element subset of {1, . . . , n}}.

Ex. We have

S4,2 = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}.

Note

#S4,2 = 6 =

(
4

2

)
.

Proposition

For 0 ≤ k ≤ n we have
(n
k

)
= #Sn,k .
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(b) Words.

A word of length n over a set A called the alphabet is a finite
sequence w = a1 . . . an where ai ∈ A for all i
Ex. We have that w = SEICCGTC 44 is a word of length 10 over
the alphabet A = {A, . . . ,Z , 1, . . . , 9}.
Let

Wn,k = {w = a1 . . . an : w has k zeros and n − k ones}.
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W4,2 = {0011, 0101, 0110, 1001, 1010, 1100}.

Note that
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(
4

2

)
.

Any w = a1 . . . an ∈ Wn,k can be obtained by choosing k of the n
positions to be zeros (and the rest will be ones by default).

Proposition

For 0 ≤ k ≤ n we have
(n
k

)
= #Wn,k .
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(c) Lattice paths.

A NE lattice path of length n is a squence P = s1 . . . sn starting at
(0, 0) and with each si being a unit step north (N) or east (E ).
Ex. We have

P = ENEEN =

Let

Pn,k = {P = s1 . . . sn : P has k N-steps and n − k E -steps}

There is a bijection f : Pn,k →Wn,k where w = f (P) is obtained
by replacing each N by a 0 and each E by a 1.
Ex. We have

P = ENEEN
f←→ w = 10110 =

1

0
1 1 0

Proposition

For 0 ≤ k ≤ n we have
(n
k

)
= #Pn,k .
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(d) Partitions.

An (integer) partition is a weakly decreasing sequence of positive
integers λ = (λ1, . . . , λm). The associated Ferrers diagram has
m left-justified rows of boxes with λi boxes in row i
Ex. Suppose λ = (3, 2, 2). Then

λ = (3, 2, 2) = ⊆ 3× 4: g←→

We say λ fits in a k × l rectangle, λ ⊆ k × l , if its Ferrers diagram
has at most k rows and at most l columns. Let

Ln,k = {λ : λ ⊆ k × (n − k)}.

There is a bijection g : Ln,k → Pn,k : given λ ⊆ k × (n − k),
P = g(λ) is formed by going from the SW corner of the rectangle
to the NE corner along the rectangle and the SE boundary of λ.

Proposition

For 0 ≤ k ≤ n we have
(n
k

)
= #Ln,k .
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has at most k rows and at most l columns. Let

Ln,k = {λ : λ ⊆ k × (n − k)}.

There is a bijection g : Ln,k → Pn,k : given λ ⊆ k × (n − k),
P = g(λ) is formed by going from the SW corner of the rectangle
to the NE corner along the rectangle and the SE boundary of λ.
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A q-analogue of a mathematical object O (number, definition,
theorem) is an object O(q) with O(1) = O.

The standard
q-analogue of n ∈ N is the polynomial

[n] = 1 + q + q2 + · · ·+ qn−1.

Ex. We have [4] = 1 + q + q2 + q3.
Note that

[n]|q=1 =

n︷ ︸︸ ︷
1 + 1 + · · ·+ 1 = n.

A q-factorial is [n]! = [1][2] · · · [n]. For 0 ≤ k ≤ n, the q-binomial
coefficients or Gaussian polynomials are[n

k

]
=

[n]!

[k]![n − k]!
.

Ex. We have[
4

2

]
=

[4]!

[2]![2]!
=

[4][3]

[2][1]
= 1 + q + 2q2 + q3 + q4.

Note that it is not clear from the definition that
[ n
k

]
is always in

N[q], the set of polynomials in q with coefficients in N.
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Here is a q-analogue for the boundary conditions and recurrence
relation for the binomial coefficients.

Theorem
The q-binomial coefficients satisfy

[n
0

]
=
[n
n

]
= 1 and, for

0 < k < n, [n

k

]
= qk

[
n − 1

k

]
+

[
n − 1

k − 1

]

=

[
n − 1

k

]
+ qn−k

[
n − 1

k − 1

]
.

Since sums and products of elements of N[q] are again in N[q], we
immediately get the following result.

Corollary

For all 0 ≤ k ≤ n we have
[ n
k

]
∈ N[q].
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(a) Words.

If w = a1 . . . an is a word over N then the inversion set of w is

Invw = {(i , j) : i < j and ai > aj}.

The corresponding inversion number is

invw = # Invw .

Ex. If w = a1a2a3a4a5 = 10110 then
Invw = {(1, 2), (1, 5), (3, 5), (4, 5)} and invw = 4.
Consider the inversion generating function

In,k(q) =
∑

w∈Wn,k

qinvw .

Ex. When n = 4 and k = 2,

W4,2 : 0011 0101 0110 1001 1010 1100
I4,2(q) = q0 + q1 + q2 + q2 + q3 + q4

=
[
4
2

]
.

Theorem
For all 0 ≤ k ≤ n we have

[ n
k

]
= In,k(q).
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(c) Partitions.

If λ = (λ1, . . . , λm) is a partition then its size is

|λ| = λ1 + · · ·+ λm.

Ex. If λ = (4, 3, 3, 2) then |λ| = 4 + 3 + 3 + 2 = 12.
Note that |λ| is the number of squares in its Ferrers diagram.
Consider the size generating function
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∑
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q|λ|.
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h = f ◦ g : Ln,k →Wn,k such that, if h(λ) = w then |λ| = invw .
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(d) Subspaces.

Let q be a prime power and Fq be the Galois field with q elements.
Consider the n-dimensional vector space Fn

q. Let

Vn,k(q) = {W : W is a k-dimensional subspace of Fn
q}.

Ex. Let q = 3. The row echelon forms for subspaces in V4,2(3) are[
1 0 ∗ ∗
0 1 ∗ ∗

] [
1 ∗ 0 ∗
0 0 1 ∗

] [
1 ∗ ∗ 0
0 0 0 1

]
[

0 1 0 ∗
0 0 1 ∗

] [
0 1 ∗ 0
0 0 0 1

] [
0 0 1 0
0 0 0 1

]
where the stars are arbitrary elements of F3. Therefore

#V4,2(3) = 34 + 33 + 32 + 32 + 3 + 1 =

[
4

2

]∣∣∣∣
q=3

.

Theorem (Knuth, 1971)

For all 0 ≤ k ≤ n and q a prime power we have
[ n
k

]
= #Vn,k(q).
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The Fibonacci numbers are defined by F1 = F2 = 1 and, for n ≥ 2,

Fn = Fn−1 + Fn−2.

Ex. F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8, . . .
A fibotorial is F !

n = F1F2 · · ·Fn. For 0 ≤ k ≤ n, the corresponding
fibonomial is (

n

k

)
F

=
F !
n

F !
kF !

n−k
.

Ex. We have(
6

3

)
F

=
F !
6

F !
3F !

3

=
F6F5F4

F3F2F1
=

8 · 5 · 3
2 · 1 · 1

= 60.

Theorem
The fibonomials satisfy

(n
0

)
F

=
(n
n

)
F

= 1 and, for 0 < k < n,(
n

k

)
F

= Fk+1

(
n − 1

k

)
F

+ Fn−k−1

(
n − 1

k − 1
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F

.

Corollary

For all 0 ≤ k ≤ n we have
(n
k

)
F
∈ N.



The Fibonacci numbers are defined by F1 = F2 = 1 and, for n ≥ 2,

Fn = Fn−1 + Fn−2.

Ex. F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8, . . .

A fibotorial is F !
n = F1F2 · · ·Fn. For 0 ≤ k ≤ n, the corresponding

fibonomial is (
n

k

)
F

=
F !
n

F !
kF !

n−k
.

Ex. We have(
6

3

)
F

=
F !
6

F !
3F !

3

=
F6F5F4

F3F2F1
=

8 · 5 · 3
2 · 1 · 1

= 60.

Theorem
The fibonomials satisfy

(n
0

)
F

=
(n
n

)
F

= 1 and, for 0 < k < n,(
n

k

)
F

= Fk+1

(
n − 1

k

)
F

+ Fn−k−1

(
n − 1

k − 1

)
F

.

Corollary

For all 0 ≤ k ≤ n we have
(n
k

)
F
∈ N.



The Fibonacci numbers are defined by F1 = F2 = 1 and, for n ≥ 2,

Fn = Fn−1 + Fn−2.

Ex. F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8, . . .
A fibotorial is F !

n = F1F2 · · ·Fn.

For 0 ≤ k ≤ n, the corresponding
fibonomial is (

n

k

)
F

=
F !
n

F !
kF !

n−k
.

Ex. We have(
6

3

)
F

=
F !
6

F !
3F !

3

=
F6F5F4

F3F2F1
=

8 · 5 · 3
2 · 1 · 1

= 60.

Theorem
The fibonomials satisfy

(n
0

)
F

=
(n
n

)
F

= 1 and, for 0 < k < n,(
n

k

)
F

= Fk+1

(
n − 1

k

)
F

+ Fn−k−1

(
n − 1

k − 1

)
F

.

Corollary

For all 0 ≤ k ≤ n we have
(n
k

)
F
∈ N.



The Fibonacci numbers are defined by F1 = F2 = 1 and, for n ≥ 2,

Fn = Fn−1 + Fn−2.

Ex. F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8, . . .
A fibotorial is F !

n = F1F2 · · ·Fn. For 0 ≤ k ≤ n, the corresponding
fibonomial is (

n

k

)
F

=
F !
n

F !
kF !

n−k
.

Ex. We have(
6

3

)
F

=
F !
6

F !
3F !

3

=
F6F5F4

F3F2F1
=

8 · 5 · 3
2 · 1 · 1

= 60.

Theorem
The fibonomials satisfy

(n
0

)
F

=
(n
n

)
F

= 1 and, for 0 < k < n,(
n

k

)
F

= Fk+1

(
n − 1

k

)
F

+ Fn−k−1

(
n − 1

k − 1

)
F

.

Corollary

For all 0 ≤ k ≤ n we have
(n
k

)
F
∈ N.



The Fibonacci numbers are defined by F1 = F2 = 1 and, for n ≥ 2,

Fn = Fn−1 + Fn−2.

Ex. F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8, . . .
A fibotorial is F !

n = F1F2 · · ·Fn. For 0 ≤ k ≤ n, the corresponding
fibonomial is (

n

k

)
F

=
F !
n

F !
kF !

n−k
.

Ex. We have(
6

3

)
F

=
F !
6

F !
3F !

3

=
F6F5F4

F3F2F1
=

8 · 5 · 3
2 · 1 · 1

= 60.

Theorem
The fibonomials satisfy

(n
0

)
F

=
(n
n

)
F

= 1 and, for 0 < k < n,(
n

k

)
F

= Fk+1

(
n − 1

k

)
F

+ Fn−k−1

(
n − 1

k − 1

)
F

.

Corollary

For all 0 ≤ k ≤ n we have
(n
k

)
F
∈ N.



The Fibonacci numbers are defined by F1 = F2 = 1 and, for n ≥ 2,

Fn = Fn−1 + Fn−2.

Ex. F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8, . . .
A fibotorial is F !

n = F1F2 · · ·Fn. For 0 ≤ k ≤ n, the corresponding
fibonomial is (

n

k

)
F

=
F !
n

F !
kF !

n−k
.

Ex. We have(
6

3

)
F

=
F !
6

F !
3F !

3

=
F6F5F4

F3F2F1
=

8 · 5 · 3
2 · 1 · 1

= 60.

Theorem
The fibonomials satisfy

(n
0

)
F

=
(n
n

)
F

= 1 and, for 0 < k < n,(
n

k

)
F

= Fk+1

(
n − 1

k

)
F

+ Fn−k−1

(
n − 1

k − 1

)
F

.

Corollary

For all 0 ≤ k ≤ n we have
(n
k

)
F
∈ N.



The Fibonacci numbers are defined by F1 = F2 = 1 and, for n ≥ 2,

Fn = Fn−1 + Fn−2.

Ex. F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8, . . .
A fibotorial is F !

n = F1F2 · · ·Fn. For 0 ≤ k ≤ n, the corresponding
fibonomial is (

n

k

)
F

=
F !
n

F !
kF !

n−k
.

Ex. We have(
6

3

)
F

=
F !
6

F !
3F !

3

=
F6F5F4

F3F2F1
=

8 · 5 · 3
2 · 1 · 1

= 60.

Theorem
The fibonomials satisfy

(n
0

)
F

=
(n
n

)
F

= 1 and, for 0 < k < n,(
n

k

)
F

= Fk+1

(
n − 1

k

)
F

+ Fn−k−1

(
n − 1

k − 1

)
F

.

Corollary

For all 0 ≤ k ≤ n we have
(n
k

)
F
∈ N.



S. and Savage were the first to give a simple combinatorial
interpretation of

(n
k

)
F

.

Other more complicated interpretations
have been given by Benjamin-Plott, and by Gessel-Viennot. A
linear tiling, T , is a covering of a row of n squares with disjoint
dominoes and monominoes. Let

Tn = {T : T a linear tiling of a row of n squares}.

Ex. We have

T3 =
{

, ,

}
Note that #T3 = 3 = F4.

Proposition

For all n ≥ 1 we have Fn = #Tn−1.
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A tiling of λ = (λ1, . . . , λm) is a union of tilings of each λi .

Let

Tλ = {T : T is a tiling of λ},
Dλ = {T ∈ Tλ : every λi begins with a domino}.

Ex. If λ = (3, 2, 2) then
∈ T(3,2,2), ∈ D(3,2,2).

If λ ⊆ k × l then there is a dual partition λ∗ = (λ∗1, . . . , λ
∗
r ) where

the λ∗j are the column lengths of (k × l)− λ. Let

Fn,k =
⋃

λ⊆k×(n−k)

(Tλ ×Dλ∗) .

Ex. If λ = (3, 2, 2) ⊆ 3× 4 then λ∗ = (3, 2):

and ∈ F7,3

Proposition (S. and Savage, 2010)

For 0 ≤ k ≤ n we have
(n
k

)
F

= #Fn,k .
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The nth Catalan number is

Cn =
1

n + 1

(
2n

n

)
.

Ex. C0 = 1, C1 = 1, C2 = 2, C3 = 5, C4 = 14, C5 = 42, . . .

Theorem
We have C0 = 1 and, for n ≥ 1, Cn =

∑n−1
i=0 CiCn−i−1.

Stanley’s Catalan Addendum lists almost 200 combinatorial
interpretations: http://www-math.mit.edu/˜rstan/ec/catadd.pdf.
For example, let

Dn = {P : P a NE path from (0, 0) to (n, n) not going below y = x}.
Theorem
For n ≥ 0 we have Cn = #Dn.

Define the fibocatalan numbers to be

Cn,F =
1

Fn+1

(
2n

n

)
F

.

It is not hard to show Cn.F ∈ N for all n. Lou Shapiro asked: Can
one find a combinatorial interpretation?
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