Two Binomial Coefficient Analogues

Bruce Sagan
Department of Mathematics
Michigan State University
East Lansing, MI 48824-1027
sagan@math.msu.edu
www.math.msu.edu/~sagan

March 4, 2013

The theme

Variation 1: binomial coefficients

Variation 2: q-binomial coefficients

Variation 3: fibonomial coefficients

Coda: an open question and bibliography

Outline

The theme

Variation 1：binomial coefficients

Variation 2：q－binomial coefficients

Variation 3：fibonomial coefficients

Coda：an open question and bibliography

Suppose we are given a sequence

$$
a_{0}, a_{1}, a_{2}, \ldots
$$

defined so that we only know that the a_{n} are rational numbers.

Suppose we are given a sequence

$$
a_{0}, a_{1}, a_{2}, \ldots
$$

defined so that we only know that the a_{n} are rational numbers. However, it appears as if the a_{n} are actually nonegative integers.

Suppose we are given a sequence

$$
a_{0}, a_{1}, a_{2}, \ldots
$$

defined so that we only know that the a_{n} are rational numbers. However, it appears as if the a_{n} are actually nonegative integers. How would we prove this?

Suppose we are given a sequence

$$
a_{0}, a_{1}, a_{2}, \ldots
$$

defined so that we only know that the a_{n} are rational numbers. However, it appears as if the a_{n} are actually nonegative integers. How would we prove this? There are two standard techniques.

Suppose we are given a sequence

$$
a_{0}, a_{1}, a_{2}, \ldots
$$

defined so that we only know that the a_{n} are rational numbers. However, it appears as if the a_{n} are actually nonegative integers. How would we prove this? There are two standard techniques.

1. Find a recursion for the a_{n} and use induction.

Suppose we are given a sequence

$$
a_{0}, a_{1}, a_{2}, \ldots
$$

defined so that we only know that the a_{n} are rational numbers. However, it appears as if the a_{n} are actually nonegative integers. How would we prove this? There are two standard techniques.

1. Find a recursion for the a_{n} and use induction.
2. Find a combinatorial interpretation for the a_{n}.

Suppose we are given a sequence

$$
a_{0}, a_{1}, a_{2}, \ldots
$$

defined so that we only know that the a_{n} are rational numbers. However, it appears as if the a_{n} are actually nonegative integers. How would we prove this? There are two standard techniques.

1. Find a recursion for the a_{n} and use induction.
2. Find a combinatorial interpretation for the a_{n}. In other words, find sets $S_{0}, S_{1}, S_{2}, \ldots$ such that, for all n,

$$
a_{n}=\# S_{n}
$$

where \# denotes cardinality.

Outline

The theme

Variation 1: binomial coefficients

Variation 2: q-binomial coefficients

Variation 3: fibonomial coefficients

Coda: an open question and bibliography

Let $\mathbb{N}=\{0,1,2, \ldots\}$.

Let $\mathbb{N}=\{0,1,2, \ldots\}$. Suppose $n, k \in \mathbb{N}$ with $0 \leq k \leq n$.

Let $\mathbb{N}=\{0,1,2, \ldots\}$. Suppose $n, k \in \mathbb{N}$ with $0 \leq k \leq n$. Define the corresponding binomial coefficient by

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Let $\mathbb{N}=\{0,1,2, \ldots\}$. Suppose $n, k \in \mathbb{N}$ with $0 \leq k \leq n$. Define the corresponding binomial coefficient by

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Ex. We have

$$
\binom{4}{2}=\frac{4!}{2!2!}=\frac{4 \cdot 3}{2 \cdot 1}=6 .
$$

Let $\mathbb{N}=\{0,1,2, \ldots\}$. Suppose $n, k \in \mathbb{N}$ with $0 \leq k \leq n$. Define the corresponding binomial coefficient by

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Ex. We have

$$
\binom{4}{2}=\frac{4!}{2!2!}=\frac{4 \cdot 3}{2 \cdot 1}=6
$$

Note that it is not clear from this definition that $\binom{n}{k}$ is an integer.

Let $\mathbb{N}=\{0,1,2, \ldots\}$. Suppose $n, k \in \mathbb{N}$ with $0 \leq k \leq n$. Define the corresponding binomial coefficient by

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Ex. We have

$$
\binom{4}{2}=\frac{4!}{2!2!}=\frac{4 \cdot 3}{2 \cdot 1}=6
$$

Note that it is not clear from this definition that $\binom{n}{k}$ is an integer.
Proposition
The binomial coefficients satisfy $\binom{n}{0}=\binom{n}{n}=1$ and, for $0<k<n$,

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}
$$

Let $\mathbb{N}=\{0,1,2, \ldots\}$. Suppose $n, k \in \mathbb{N}$ with $0 \leq k \leq n$. Define the corresponding binomial coefficient by

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Ex. We have

$$
\binom{4}{2}=\frac{4!}{2!2!}=\frac{4 \cdot 3}{2 \cdot 1}=6 .
$$

Note that it is not clear from this definition that $\binom{n}{k}$ is an integer.
Proposition
The binomial coefficients satisfy $\binom{n}{0}=\binom{n}{n}=1$ and, for $0<k<n$,

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}
$$

Since the sum of two integers is an integer, induction on n gives:
Corollary
For all $0 \leq k \leq n$ we have $\binom{n}{k} \in \mathbb{N}$.
(a) Subsets.
(a) Subsets.

Let

$$
\mathcal{S}_{n, k}=\{S: S \text { is a } k \text {-element subset of }\{1, \ldots, n\}\} .
$$

(a) Subsets.

Let

$$
\mathcal{S}_{n, k}=\{S: S \text { is a } k \text {-element subset of }\{1, \ldots, n\}\} .
$$

Ex. We have

$$
\mathcal{S}_{4,2}=\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\} .
$$

(a) Subsets.

Let

$$
\mathcal{S}_{n, k}=\{S: S \text { is a } k \text {-element subset of }\{1, \ldots, n\}\} .
$$

Ex. We have

$$
\mathcal{S}_{4,2}=\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\} .
$$

Note

$$
\# \mathcal{S}_{4,2}=6=\binom{4}{2} .
$$

(a) Subsets.

Let

$$
\mathcal{S}_{n, k}=\{S: S \text { is a } k \text {-element subset of }\{1, \ldots, n\}\} .
$$

Ex. We have

$$
\mathcal{S}_{4,2}=\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\} .
$$

Note

$$
\# \mathcal{S}_{4,2}=6=\binom{4}{2} .
$$

Proposition
For $0 \leq k \leq n$ we have $\binom{n}{k}=\# \mathcal{S}_{n, k}$.
(b) Words.

(b) Words.

A word of length n over a set \mathcal{A} called the alphabet is a finite sequence $w=a_{1} \ldots a_{n}$ where $a_{i} \in \mathcal{A}$ for all i
(b) Words.

A word of length n over a set \mathcal{A} called the alphabet is a finite sequence $w=a_{1} \ldots a_{n}$ where $a_{i} \in \mathcal{A}$ for all i
Ex. We have that $w=$ SEICCGTC44 is a word of length 10 over the alphabet $\mathcal{A}=\{A, \ldots, Z, 1, \ldots, 9\}$.

(b) Words.

A word of length n over a set \mathcal{A} called the alphabet is a finite sequence $w=a_{1} \ldots a_{n}$ where $a_{i} \in \mathcal{A}$ for all i
Ex. We have that $w=$ SEICCGTC44 is a word of length 10 over the alphabet $\mathcal{A}=\{A, \ldots, Z, 1, \ldots, 9\}$.
Let

$$
\mathcal{W}_{n, k}=\left\{w=a_{1} \ldots a_{n}: w \text { has } k \text { zeros and } n-k \text { ones }\right\} .
$$

(b) Words.

A word of length n over a set \mathcal{A} called the alphabet is a finite sequence $w=a_{1} \ldots a_{n}$ where $a_{i} \in \mathcal{A}$ for all i
Ex. We have that $w=$ SEICCGTC44 is a word of length 10 over the alphabet $\mathcal{A}=\{A, \ldots, Z, 1, \ldots, 9\}$.
Let

$$
\mathcal{W}_{n, k}=\left\{w=a_{1} \ldots a_{n}: w \text { has } k \text { zeros and } n-k \text { ones }\right\} .
$$

Ex. We have

$$
\mathcal{W}_{4,2}=\{0011,0101,0110,1001,1010,1100\}
$$

(b) Words.

A word of length n over a set \mathcal{A} called the alphabet is a finite sequence $w=a_{1} \ldots a_{n}$ where $a_{i} \in \mathcal{A}$ for all i
Ex. We have that $w=$ SEICCGTC44 is a word of length 10 over the alphabet $\mathcal{A}=\{A, \ldots, Z, 1, \ldots, 9\}$.
Let

$$
\mathcal{W}_{n, k}=\left\{w=a_{1} \ldots a_{n}: w \text { has } k \text { zeros and } n-k \text { ones }\right\} .
$$

Ex. We have

$$
\mathcal{W}_{4,2}=\{0011,0101,0110,1001,1010,1100\}
$$

Note that

$$
\# \mathcal{W}_{4,2}=6=\binom{4}{2}
$$

(b) Words.

A word of length n over a set \mathcal{A} called the alphabet is a finite sequence $w=a_{1} \ldots a_{n}$ where $a_{i} \in \mathcal{A}$ for all i
Ex. We have that $w=$ SEICCGTC44 is a word of length 10 over the alphabet $\mathcal{A}=\{A, \ldots, Z, 1, \ldots, 9\}$.
Let

$$
\mathcal{W}_{n, k}=\left\{w=a_{1} \ldots a_{n}: w \text { has } k \text { zeros and } n-k \text { ones }\right\}
$$

Ex. We have

$$
\mathcal{W}_{4,2}=\{0011,0101,0110,1001,1010,1100\}
$$

Note that

$$
\# \mathcal{W}_{4,2}=6=\binom{4}{2}
$$

Any $w=a_{1} \ldots a_{n} \in \mathcal{W}_{n, k}$ can be obtained by choosing k of the n positions to be zeros (and the rest will be ones by default).
(b) Words.

A word of length n over a set \mathcal{A} called the alphabet is a finite sequence $w=a_{1} \ldots a_{n}$ where $a_{i} \in \mathcal{A}$ for all i
Ex. We have that $w=$ SEICCGTC44 is a word of length 10 over the alphabet $\mathcal{A}=\{A, \ldots, Z, 1, \ldots, 9\}$.
Let

$$
\mathcal{W}_{n, k}=\left\{w=a_{1} \ldots a_{n}: w \text { has } k \text { zeros and } n-k \text { ones }\right\}
$$

Ex. We have

$$
\mathcal{W}_{4,2}=\{0011,0101,0110,1001,1010,1100\}
$$

Note that

$$
\# \mathcal{W}_{4,2}=6=\binom{4}{2}
$$

Any $w=a_{1} \ldots a_{n} \in \mathcal{W}_{n, k}$ can be obtained by choosing k of the n positions to be zeros (and the rest will be ones by default).
Proposition
For $0 \leq k \leq n$ we have $\binom{n}{k}=\# \mathcal{W}_{n, k}$.
(c) Lattice paths.
(c) Lattice paths.

A NE lattice path of length n is a squence $P=s_{1} \ldots s_{n}$ starting at $(0,0)$ and with each s_{i} being a unit step north (N) or east (E).
(c) Lattice paths.

A NE lattice path of length n is a squence $P=s_{1} \ldots s_{n}$ starting at $(0,0)$ and with each s_{i} being a unit step north (N) or east (E).
Ex. We have

$$
P=E N E E N=\begin{array}{|l|l|l|l|}
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{array}
$$

(c) Lattice paths.

A NE lattice path of length n is a squence $P=s_{1} \ldots s_{n}$ starting at $(0,0)$ and with each s_{i} being a unit step north (N) or east (E).
Ex. We have

$$
P=E N E E N=\begin{array}{|l|l|l|l|}
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{array}
$$

Let

$$
\mathcal{P}_{n, k}=\left\{P=s_{1} \ldots s_{n}: P \text { has } k N \text {-steps and } n-k E \text {-steps }\right\}
$$

(c) Lattice paths.

A NE lattice path of length n is a squence $P=s_{1} \ldots s_{n}$ starting at $(0,0)$ and with each s_{i} being a unit step north (N) or east (E).
Ex. We have

$$
P=E N E E N=\begin{array}{|l|l|l|l|}
\hline & & & \\
\hline & & \\
\hline & & & \\
\hline
\end{array}
$$

Let

$$
\mathcal{P}_{n, k}=\left\{P=s_{1} \ldots s_{n}: P \text { has } k N \text {-steps and } n-k E \text {-steps }\right\}
$$

There is a bijection $f: \mathcal{P}_{n, k} \rightarrow \mathcal{W}_{n, k}$ where $w=f(P)$ is obtained by replacing each N by a 0 and each E by a 1 .

(c) Lattice paths.

A NE lattice path of length n is a squence $P=s_{1} \ldots s_{n}$ starting at $(0,0)$ and with each s_{i} being a unit step north (N) or east (E).
Ex. We have

$$
P=E N E E N=\begin{array}{|l|l|l|l|}
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{array}
$$

Let

$$
\mathcal{P}_{n, k}=\left\{P=s_{1} \ldots s_{n}: P \text { has } k N \text {-steps and } n-k E \text {-steps }\right\}
$$

There is a bijection $f: \mathcal{P}_{n, k} \rightarrow \mathcal{W}_{n, k}$ where $w=f(P)$ is obtained by replacing each N by a 0 and each E by a 1 .
Ex. We have

$$
P=E N E E N \stackrel{f}{\longleftrightarrow} w=10110=\begin{array}{|l|l|l|l|}
\hline & & & \\
\hline & 1 & 1 & 0 \\
\hline 0 & & & \\
\hline 1 & \\
\hline
\end{array}
$$

(c) Lattice paths.

A NE lattice path of length n is a squence $P=s_{1} \ldots s_{n}$ starting at $(0,0)$ and with each s_{i} being a unit step north (N) or east (E).
Ex. We have

$$
P=E N E E N=\begin{array}{|l|l|l|l|}
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{array}
$$

Let

$$
\mathcal{P}_{n, k}=\left\{P=s_{1} \ldots s_{n}: P \text { has } k N \text {-steps and } n-k E \text {-steps }\right\}
$$

There is a bijection $f: \mathcal{P}_{n, k} \rightarrow \mathcal{W}_{n, k}$ where $w=f(P)$ is obtained by replacing each N by a 0 and each E by a 1 .
Ex. We have

$$
P=E N E E N \stackrel{f}{\longleftrightarrow} w=10110=\begin{array}{|l|l|l|l|}
\hline & & & \\
\hline & 1 & 1 & 0 \\
\hline 0 & & & \\
\hline
\end{array}
$$

Proposition
For $0 \leq k \leq n$ we have $\binom{n}{k}=\# \mathcal{P}_{n, k}$.
(d) Partitions.

(d) Partitions.

An (integer) partition is a weakly decreasing sequence of positive integers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$.

(d) Partitions.

An (integer) partition is a weakly decreasing sequence of positive integers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$.

Ex. Suppose $\lambda=(3,2,2)$.

(d) Partitions.

An (integer) partition is a weakly decreasing sequence of positive integers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$. The associated Ferrers diagram has m left-justified rows of boxes with λ_{i} boxes in row i
Ex. Suppose $\lambda=(3,2,2)$.

(d) Partitions.

An (integer) partition is a weakly decreasing sequence of positive integers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$. The associated Ferrers diagram has m left-justified rows of boxes with λ_{i} boxes in row i
Ex. Suppose $\lambda=(3,2,2)$. Then

$\lambda=(3,2,2)=$| |
| :--- |
| \square |
| \square |

(d) Partitions.

An (integer) partition is a weakly decreasing sequence of positive integers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$. The associated Ferrers diagram has m left-justified rows of boxes with λ_{i} boxes in row i

We say λ fits in a $k \times I$ rectangle, $\lambda \subseteq k \times I$, if its Ferrers diagram has at most k rows and at most / columns.

(d) Partitions.

An (integer) partition is a weakly decreasing sequence of positive integers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$. The associated Ferrers diagram has m left-justified rows of boxes with λ_{i} boxes in row i
Ex. Suppose $\lambda=(3,2,2)$. Then

We say λ fits in a $k \times I$ rectangle, $\lambda \subseteq k \times I$, if its Ferrers diagram has at most k rows and at most / columns.

(d) Partitions.

An (integer) partition is a weakly decreasing sequence of positive integers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$. The associated Ferrers diagram has m left-justified rows of boxes with λ_{i} boxes in row i
Ex. Suppose $\lambda=(3,2,2)$. Then

We say λ fits in a $k \times I$ rectangle, $\lambda \subseteq k \times I$, if its Ferrers diagram has at most k rows and at most / columns.

(d) Partitions.

An (integer) partition is a weakly decreasing sequence of positive integers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$. The associated Ferrers diagram has m left-justified rows of boxes with λ_{i} boxes in row i
Ex. Suppose $\lambda=(3,2,2)$. Then

We say λ fits in a $k \times I$ rectangle, $\lambda \subseteq k \times I$, if its Ferrers diagram has at most k rows and at most $/$ columns. Let

$$
\mathcal{L}_{n, k}=\{\lambda: \lambda \subseteq k \times(n-k)\}
$$

(d) Partitions.

An (integer) partition is a weakly decreasing sequence of positive integers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$. The associated Ferrers diagram has m left-justified rows of boxes with λ_{i} boxes in row i
Ex. Suppose $\lambda=(3,2,2)$. Then

We say λ fits in a $k \times I$ rectangle, $\lambda \subseteq k \times I$, if its Ferrers diagram has at most k rows and at most $/$ columns. Let

$$
\mathcal{L}_{n, k}=\{\lambda: \lambda \subseteq k \times(n-k)\}
$$

There is a bijection $g: \mathcal{L}_{n, k} \rightarrow \mathcal{P}_{n, k}:$

(d) Partitions.

An (integer) partition is a weakly decreasing sequence of positive integers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$. The associated Ferrers diagram has m left-justified rows of boxes with λ_{i} boxes in row i
Ex. Suppose $\lambda=(3,2,2)$. Then

$$
\lambda=(3,2,2)=\begin{array}{|l|l|l|l|l|l|}
\hline & & \\
\hline & \\
\hline & & & & & \\
\hline
\end{array}
$$

We say λ fits in a $k \times I$ rectangle, $\lambda \subseteq k \times I$, if its Ferrers diagram has at most k rows and at most $/$ columns. Let

$$
\mathcal{L}_{n, k}=\{\lambda: \lambda \subseteq k \times(n-k)\}
$$

There is a bijection $g: \mathcal{L}_{n, k} \rightarrow \mathcal{P}_{n, k}$: given $\lambda \subseteq k \times(n-k)$, $P=g(\lambda)$ is formed by going from the SW corner of the rectangle to the $N E$ corner along the rectangle and the $S E$ boundary of λ.

(d) Partitions.

An (integer) partition is a weakly decreasing sequence of positive integers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$. The associated Ferrers diagram has m left-justified rows of boxes with λ_{i} boxes in row i
Ex. Suppose $\lambda=(3,2,2)$. Then

We say λ fits in a $k \times I$ rectangle, $\lambda \subseteq k \times I$, if its Ferrers diagram has at most k rows and at most $/$ columns. Let

$$
\mathcal{L}_{n, k}=\{\lambda: \lambda \subseteq k \times(n-k)\}
$$

There is a bijection $g: \mathcal{L}_{n, k} \rightarrow \mathcal{P}_{n, k}$: given $\lambda \subseteq k \times(n-k)$, $P=g(\lambda)$ is formed by going from the SW corner of the rectangle to the $N E$ corner along the rectangle and the $S E$ boundary of λ.

(d) Partitions.

An (integer) partition is a weakly decreasing sequence of positive integers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$. The associated Ferrers diagram has m left-justified rows of boxes with λ_{i} boxes in row i
Ex. Suppose $\lambda=(3,2,2)$. Then

We say λ fits in a $k \times I$ rectangle, $\lambda \subseteq k \times I$, if its Ferrers diagram has at most k rows and at most $/$ columns. Let

$$
\mathcal{L}_{n, k}=\{\lambda: \lambda \subseteq k \times(n-k)\}
$$

There is a bijection $g: \mathcal{L}_{n, k} \rightarrow \mathcal{P}_{n, k}$: given $\lambda \subseteq k \times(n-k)$, $P=g(\lambda)$ is formed by going from the SW corner of the rectangle to the $N E$ corner along the rectangle and the $S E$ boundary of λ.
Proposition
For $0 \leq k \leq n$ we have $\binom{n}{k}=\# \mathcal{L}_{n, k}$.

Outline

The theme

Variation 1: binomial coefficients

Variation 2: q-binomial coefficients

Variation 3: fibonomial coefficients

Coda: an open question and bibliography

A q-analogue of a mathematical object \mathcal{O} (number, definition, theorem) is an object $\mathcal{O}(q)$ with $\mathcal{O}(1)=\mathcal{O}$.

A q-analogue of a mathematical object \mathcal{O} (number, definition, theorem) is an object $\mathcal{O}(q)$ with $\mathcal{O}(1)=\mathcal{O}$. The standard q-analogue of $n \in \mathbb{N}$ is the polynomial

$$
[n]=1+q+q^{2}+\cdots+q^{n-1}
$$

A q-analogue of a mathematical object \mathcal{O} (number, definition, theorem) is an object $\mathcal{O}(q)$ with $\mathcal{O}(1)=\mathcal{O}$. The standard q-analogue of $n \in \mathbb{N}$ is the polynomial

$$
[n]=1+q+q^{2}+\cdots+q^{n-1}
$$

Ex. We have $[4]=1+q+q^{2}+q^{3}$.

A q-analogue of a mathematical object \mathcal{O} (number, definition, theorem) is an object $\mathcal{O}(q)$ with $\mathcal{O}(1)=\mathcal{O}$. The standard q-analogue of $n \in \mathbb{N}$ is the polynomial

$$
[n]=1+q+q^{2}+\cdots+q^{n-1}
$$

Ex. We have $[4]=1+q+q^{2}+q^{3}$.
Note that

$$
\left.[n]\right|_{q=1}=\overbrace{1+1+\cdots+1}^{n}=n .
$$

A q-analogue of a mathematical object \mathcal{O} (number, definition, theorem) is an object $\mathcal{O}(q)$ with $\mathcal{O}(1)=\mathcal{O}$. The standard q-analogue of $n \in \mathbb{N}$ is the polynomial

$$
[n]=1+q+q^{2}+\cdots+q^{n-1}
$$

Ex. We have $[4]=1+q+q^{2}+q^{3}$.
Note that

$$
\left.[n]\right|_{q=1}=\overbrace{1+1+\cdots+1}^{n}=n .
$$

A q-factorial is $[n]!=[1][2] \cdots[n]$.

A q-analogue of a mathematical object \mathcal{O} (number, definition, theorem) is an object $\mathcal{O}(q)$ with $\mathcal{O}(1)=\mathcal{O}$. The standard q-analogue of $n \in \mathbb{N}$ is the polynomial

$$
[n]=1+q+q^{2}+\cdots+q^{n-1}
$$

Ex. We have $[4]=1+q+q^{2}+q^{3}$.
Note that

$$
\left.[n]\right|_{q=1}=\overbrace{1+1+\cdots+1}^{n}=n .
$$

A q-factorial is $[n]!=[1][2] \cdots[n]$. For $0 \leq k \leq n$, the q-binomial coefficients or Gaussian polynomials are

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{[n]!}{[k]![n-k]!} .
$$

A q-analogue of a mathematical object \mathcal{O} (number, definition, theorem) is an object $\mathcal{O}(q)$ with $\mathcal{O}(1)=\mathcal{O}$. The standard q-analogue of $n \in \mathbb{N}$ is the polynomial

$$
[n]=1+q+q^{2}+\cdots+q^{n-1}
$$

Ex. We have $[4]=1+q+q^{2}+q^{3}$.
Note that

$$
\left.[n]\right|_{q=1}=\overbrace{1+1+\cdots+1}^{n}=n .
$$

A q-factorial is $[n]!=[1][2] \cdots[n]$. For $0 \leq k \leq n$, the q-binomial coefficients or Gaussian polynomials are

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{[n]!}{[k]![n-k]!}
$$

Ex. We have

$$
\left[\begin{array}{l}
4 \\
2
\end{array}\right]=\frac{[4]!}{[2]![2]!}=\frac{[4][3]}{[2][1]}=1+q+2 q^{2}+q^{3}+q^{4} .
$$

A q-analogue of a mathematical object \mathcal{O} (number, definition, theorem) is an object $\mathcal{O}(q)$ with $\mathcal{O}(1)=\mathcal{O}$. The standard q-analogue of $n \in \mathbb{N}$ is the polynomial

$$
[n]=1+q+q^{2}+\cdots+q^{n-1}
$$

Ex. We have $[4]=1+q+q^{2}+q^{3}$.
Note that

$$
\left.[n]\right|_{q=1}=\overbrace{1+1+\cdots+1}^{n}=n .
$$

A q-factorial is $[n]!=[1][2] \cdots[n]$. For $0 \leq k \leq n$, the q-binomial coefficients or Gaussian polynomials are

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{[n]!}{[k]![n-k]!}
$$

Ex. We have

$$
\left[\begin{array}{l}
4 \\
2
\end{array}\right]=\frac{[4]!}{[2]![2]!}=\frac{[4][3]}{[2][1]}=1+q+2 q^{2}+q^{3}+q^{4}
$$

Note that it is not clear from the definition that $\left[\begin{array}{l}n \\ k\end{array}\right]$ is always in $\mathbb{N}[q]$, the set of polynomials in q with coefficients in \mathbb{N}.

Here is a q-analogue for the boundary conditions and recurrence relation for the binomial coefficients.

Here is a q-analogue for the boundary conditions and recurrence relation for the binomial coefficients.

Theorem
The q-binomial coefficients satisfy $\left[\begin{array}{l}n \\ 0\end{array}\right]=\left[\begin{array}{l}n \\ n\end{array}\right]=1$ and, for $0<k<n$,

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=q^{k}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]+\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]
$$

Here is a q-analogue for the boundary conditions and recurrence relation for the binomial coefficients.

Theorem
The q-binomial coefficients satisfy $\left[\begin{array}{l}n \\ 0\end{array}\right]=\left[\begin{array}{l}n \\ n\end{array}\right]=1$ and, for $0<k<n$,

$$
\begin{aligned}
{\left[\begin{array}{l}
n \\
k
\end{array}\right] } & =q^{k}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]+\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right] \\
& =\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]+q^{n-k}\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right] .
\end{aligned}
$$

Here is a q-analogue for the boundary conditions and recurrence relation for the binomial coefficients.

Theorem
The q-binomial coefficients satisfy $\left[\begin{array}{l}n \\ 0\end{array}\right]=\left[\begin{array}{l}n \\ n\end{array}\right]=1$ and, for
$0<k<n$,

$$
\begin{aligned}
{\left[\begin{array}{l}
n \\
k
\end{array}\right] } & =q^{k}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]+\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right] \\
& =\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]+q^{n-k}\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right] .
\end{aligned}
$$

Since sums and products of elements of $\mathbb{N}[q]$ are again in $\mathbb{N}[q]$, we immediately get the following result.
Corollary
For all $0 \leq k \leq n$ we have $\left[\begin{array}{l}n \\ k\end{array}\right] \in \mathbb{N}[q]$.
(a) Words.
(a) Words.

If $w=a_{1} \ldots a_{n}$ is a word over \mathbb{N} then the inversion set of w is

$$
\operatorname{Inv} w=\left\{(i, j): i<j \text { and } a_{i}>a_{j}\right\}
$$

(a) Words.

If $w=a_{1} \ldots a_{n}$ is a word over \mathbb{N} then the inversion set of w is

$$
\operatorname{Inv} w=\left\{(i, j): i<j \text { and } a_{i}>a_{j}\right\}
$$

Ex. If $w=a_{1} a_{2} a_{3} a_{4} a_{5}=10110$ then
Inv $w=\{(1,2),(1,5),(3,5),(4,5)\}$
(a) Words.

If $w=a_{1} \ldots a_{n}$ is a word over \mathbb{N} then the inversion set of w is

$$
\operatorname{Inv} w=\left\{(i, j): i<j \text { and } a_{i}>a_{j}\right\}
$$

The corresponding inversion number is

$$
\operatorname{inv} w=\# \operatorname{Inv} w .
$$

Ex. If $w=a_{1} a_{2} a_{3} a_{4} a_{5}=10110$ then
Inv $w=\{(1,2),(1,5),(3,5),(4,5)\}$
(a) Words.

If $w=a_{1} \ldots a_{n}$ is a word over \mathbb{N} then the inversion set of w is

$$
\operatorname{Inv} w=\left\{(i, j): i<j \text { and } a_{i}>a_{j}\right\}
$$

The corresponding inversion number is

$$
\operatorname{inv} w=\# \operatorname{Inv} w .
$$

Ex. If $w=a_{1} a_{2} a_{3} a_{4} a_{5}=10110$ then
Inv $w=\{(1,2),(1,5),(3,5),(4,5)\} \quad$ and inv $w=4$.
(a) Words.

If $w=a_{1} \ldots a_{n}$ is a word over \mathbb{N} then the inversion set of w is

$$
\operatorname{Inv} w=\left\{(i, j): i<j \text { and } a_{i}>a_{j}\right\}
$$

The corresponding inversion number is

$$
\operatorname{inv} w=\# \operatorname{Inv} w .
$$

Ex. If $w=a_{1} a_{2} a_{3} a_{4} a_{5}=10110$ then
Inv $w=\{(1,2),(1,5),(3,5),(4,5)\} \quad$ and inv $w=4$.
Consider the inversion generating function

$$
I_{n, k}(q)=\sum_{w \in \mathcal{W}_{n, k}} q^{\operatorname{inv} w}
$$

(a) Words.

If $w=a_{1} \ldots a_{n}$ is a word over \mathbb{N} then the inversion set of w is

$$
\operatorname{Inv} w=\left\{(i, j): i<j \text { and } a_{i}>a_{j}\right\}
$$

The corresponding inversion number is

$$
\operatorname{inv} w=\# \operatorname{Inv} w .
$$

Ex. If $w=a_{1} a_{2} a_{3} a_{4} a_{5}=10110$ then
Inv $w=\{(1,2),(1,5),(3,5),(4,5)\} \quad$ and inv $w=4$.
Consider the inversion generating function

$$
I_{n, k}(q)=\sum_{w \in \mathcal{W}_{n, k}} q^{\operatorname{inv} w}
$$

Ex. When $n=4$ and $k=2$,
$\mathcal{W}_{4,2}$
0011
0101
011010011010
(a) Words.

If $w=a_{1} \ldots a_{n}$ is a word over \mathbb{N} then the inversion set of w is

$$
\operatorname{Inv} w=\left\{(i, j): i<j \text { and } a_{i}>a_{j}\right\}
$$

The corresponding inversion number is

$$
\operatorname{inv} w=\# \operatorname{Inv} w .
$$

Ex. If $w=a_{1} a_{2} a_{3} a_{4} a_{5}=10110$ then
Inv $w=\{(1,2),(1,5),(3,5),(4,5)\} \quad$ and inv $w=4$.
Consider the inversion generating function

$$
I_{n, k}(q)=\sum_{w \in \mathcal{W}_{n, k}} q^{\operatorname{inv} w}
$$

Ex. When $n=4$ and $k=2$,

$$
\begin{gathered}
\mathcal{W}_{4,2}: 0011 \quad 0101 \quad 0110 \begin{array}{c}
1001 \\
I_{4,2}(q)
\end{array}=q^{0}+q^{1}+q^{2}+q^{2}+\begin{array}{c}
1010 \\
q^{3}
\end{array}+\begin{array}{c}
1100 \\
q^{4}
\end{array}
\end{gathered}
$$

(a) Words.

If $w=a_{1} \ldots a_{n}$ is a word over \mathbb{N} then the inversion set of w is

$$
\operatorname{Inv} w=\left\{(i, j): i<j \text { and } a_{i}>a_{j}\right\}
$$

The corresponding inversion number is

$$
\operatorname{inv} w=\# \operatorname{Inv} w .
$$

Ex. If $w=a_{1} a_{2} a_{3} a_{4} a_{5}=10110$ then
Inv $w=\{(1,2),(1,5),(3,5),(4,5)\} \quad$ and inv $w=4$.
Consider the inversion generating function

$$
I_{n, k}(q)=\sum_{w \in \mathcal{W}_{n, k}} q^{\operatorname{inv} w}
$$

Ex. When $n=4$ and $k=2$,

$$
\begin{aligned}
\mathcal{W}_{4,2} & : 00110101 \quad 0110{ }^{1001} 1010 \\
I_{4,2}(q) & =q^{0}+q^{1}+q^{2}+q^{2}+q^{3}+q^{4} \\
& =\left[\begin{array}{l}
4 \\
2
\end{array}\right] .
\end{aligned}
$$

(a) Words.

If $w=a_{1} \ldots a_{n}$ is a word over \mathbb{N} then the inversion set of w is

$$
\operatorname{Inv} w=\left\{(i, j): i<j \text { and } a_{i}>a_{j}\right\}
$$

The corresponding inversion number is

$$
\operatorname{inv} w=\# \operatorname{Inv} w .
$$

Ex. If $w=a_{1} a_{2} a_{3} a_{4} a_{5}=10110$ then
Inv $w=\{(1,2),(1,5),(3,5),(4,5)\} \quad$ and inv $w=4$.
Consider the inversion generating function

$$
I_{n, k}(q)=\sum_{w \in \mathcal{W}_{n, k}} q^{\operatorname{inv} w}
$$

Ex. When $n=4$ and $k=2$,

$$
\begin{aligned}
\mathcal{W}_{4,2} & : 00110101 \quad 0110{ }^{1001} 1010 \\
I_{4,2}(q) & =q^{0}+q^{1}+q^{2}+q^{2}+q^{3}+q^{4} \\
& =\left[\begin{array}{l}
4 \\
2
\end{array}\right] .
\end{aligned}
$$

Theorem
For all $0 \leq k \leq n$ we have $\left[\begin{array}{l}n \\ k\end{array}\right]=I_{n, k}(q)$.
(b) Even more words.
(b) Even more words.

If $w=a_{1} \ldots a_{n}$ is a word over \mathbb{N} then the major index of w is

$$
\operatorname{maj} w=\sum_{a_{i}>a_{i+1}} i
$$

(b) Even more words.

If $w=a_{1} \ldots a_{n}$ is a word over \mathbb{N} then the major index of w is

$$
\operatorname{maj} w=\sum_{a_{i}>a_{i+1}} i .
$$

Ex. If $w=a_{1} a_{2} a_{3} a_{4} a_{5}=10110$ then $a_{1}>a_{2}$ and $a_{4}>a_{5}$ so maj $w=1+4=5$.
(b) Even more words.

If $w=a_{1} \ldots a_{n}$ is a word over \mathbb{N} then the major index of w is

$$
\operatorname{maj} w=\sum_{a_{i}>a_{i+1}} i
$$

Ex. If $w=a_{1} a_{2} a_{3} a_{4} a_{5}=10110$ then $a_{1}>a_{2}$ and $a_{4}>a_{5}$ so maj $w=1+4=5$.
Consider the major index generating function

$$
M_{n, k}(q)=\sum_{w \in \mathcal{W}_{n, k}} q^{\text {maj } w}
$$

(b) Even more words.

If $w=a_{1} \ldots a_{n}$ is a word over \mathbb{N} then the major index of w is

$$
\operatorname{maj} w=\sum_{a_{i}>a_{i+1}} i .
$$

Ex. If $w=a_{1} a_{2} a_{3} a_{4} a_{5}=10110$ then $a_{1}>a_{2}$ and $a_{4}>a_{5}$ so maj $w=1+4=5$.
Consider the major index generating function

$$
M_{n, k}(q)=\sum_{w \in \mathcal{W}_{n, k}} q^{\operatorname{maj} w}
$$

Ex. When $n=4$ and $k=2$,

$$
\begin{array}{lllllll}
\mathcal{W}_{4,2} & : & 0011 & 0101 & 0110 & 1001 & 1010
\end{array} 1100
$$

(b) Even more words.

If $w=a_{1} \ldots a_{n}$ is a word over \mathbb{N} then the major index of w is

$$
\operatorname{maj} w=\sum_{a_{i}>a_{i+1}} i .
$$

Ex. If $w=a_{1} a_{2} a_{3} a_{4} a_{5}=10110$ then $a_{1}>a_{2}$ and $a_{4}>a_{5}$ so maj $w=1+4=5$.
Consider the major index generating function

$$
M_{n, k}(q)=\sum_{w \in \mathcal{W}_{n, k}} q^{\text {maj } w}
$$

Ex. When $n=4$ and $k=2$,

$$
\begin{gathered}
\mathcal{W}_{4,2}: 0011{ }_{2}^{0101} 0110{ }_{0} 1001 \begin{array}{c}
1010 \\
M_{4,2}(q)
\end{array}=q^{0}+q^{2}+q^{3}+{ }^{2}+q^{4}+\begin{array}{c}
q^{2}
\end{array}
\end{gathered}
$$

(b) Even more words.

If $w=a_{1} \ldots a_{n}$ is a word over \mathbb{N} then the major index of w is

$$
\operatorname{maj} w=\sum_{a_{i}>a_{i+1}} i .
$$

Ex. If $w=a_{1} a_{2} a_{3} a_{4} a_{5}=10110$ then $a_{1}>a_{2}$ and $a_{4}>a_{5}$ so maj $w=1+4=5$.
Consider the major index generating function

$$
M_{n, k}(q)=\sum_{w \in \mathcal{W}_{n, k}} q^{\text {maj } w}
$$

Ex. When $n=4$ and $k=2$,

$$
\begin{aligned}
\mathcal{W}_{4,2} & :{ }^{0011}{ }^{0} 0101 \quad 0110 \quad 1001 \quad 1010 \\
M_{4,2}(q) & =q^{0}+q^{2}+q^{3}+q+q^{4}+q^{2} \\
& =\left[\begin{array}{l}
4 \\
2
\end{array}\right] .
\end{aligned}
$$

(b) Even more words.

If $w=a_{1} \ldots a_{n}$ is a word over \mathbb{N} then the major index of w is

$$
\operatorname{maj} w=\sum_{a_{i}>a_{i+1}} i
$$

Ex. If $w=a_{1} a_{2} a_{3} a_{4} a_{5}=10110$ then $a_{1}>a_{2}$ and $a_{4}>a_{5}$ so maj $w=1+4=5$.
Consider the major index generating function

$$
M_{n, k}(q)=\sum_{w \in \mathcal{W}_{n, k}} q^{\text {maj } w}
$$

Ex. When $n=4$ and $k=2$,

$$
\begin{aligned}
& \mathcal{W}_{4,2}: 0011 \quad 0101 \quad 0110 \begin{array}{c}
1001 \\
M_{4,2}(q)
\end{array} \\
&=q^{0}+q^{2}+q^{3}+q+q^{4}+q^{2} \\
&=\left[\begin{array}{l}
4 \\
2
\end{array}\right] .
\end{aligned}
$$

Theorem
For all $0 \leq k \leq n$ we have $\left[\begin{array}{l}n \\ k\end{array}\right]=M_{n, k}(q)$.
(c) Partitions.
(c) Partitions.

If $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is a partition then its size is

$$
|\lambda|=\lambda_{1}+\cdots+\lambda_{m} .
$$

(c) Partitions.

If $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is a partition then its size is

$$
|\lambda|=\lambda_{1}+\cdots+\lambda_{m} .
$$

Ex. If $\lambda=(4,3,3,2)$ then $|\lambda|=4+3+3+2=12$.
(c) Partitions.

If $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is a partition then its size is

$$
|\lambda|=\lambda_{1}+\cdots+\lambda_{m} .
$$

Ex. If $\lambda=(4,3,3,2)$ then $|\lambda|=4+3+3+2=12$.
Note that $|\lambda|$ is the number of squares in its Ferrers diagram.
(c) Partitions.

If $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is a partition then its size is

$$
|\lambda|=\lambda_{1}+\cdots+\lambda_{m} .
$$

Ex. If $\lambda=(4,3,3,2)$ then $|\lambda|=4+3+3+2=12$.
Note that $|\lambda|$ is the number of squares in its Ferrers diagram.
Consider the size generating function

$$
S_{n, k}(q)=\sum_{\lambda \in \mathcal{L}_{n, k}} q^{|\lambda|}
$$

(c) Partitions.

If $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is a partition then its size is

$$
|\lambda|=\lambda_{1}+\cdots+\lambda_{m} .
$$

Ex. If $\lambda=(4,3,3,2)$ then $|\lambda|=4+3+3+2=12$.
Note that $|\lambda|$ is the number of squares in its Ferrers diagram.
Consider the size generating function

$$
S_{n, k}(q)=\sum_{\lambda \in \mathcal{L}_{n, k}} q^{|\lambda|}
$$

Composing $g: \mathcal{L}_{n, k} \rightarrow \mathcal{P}_{n, k}$ and $f: \mathcal{P}_{n, k} \rightarrow \mathcal{W}_{n, k}$ gives a bijection $h=f \circ g: \mathcal{L}_{n, k} \rightarrow \mathcal{W}_{n, k}$ such that, if $h(\lambda)=w$ then $|\lambda|=\operatorname{inv} w$.
(c) Partitions.

If $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is a partition then its size is

$$
|\lambda|=\lambda_{1}+\cdots+\lambda_{m} .
$$

Ex. If $\lambda=(4,3,3,2)$ then $|\lambda|=4+3+3+2=12$.
Note that $|\lambda|$ is the number of squares in its Ferrers diagram.
Consider the size generating function

$$
S_{n, k}(q)=\sum_{\lambda \in \mathcal{L}_{n, k}} q^{|\lambda|}
$$

Composing $g: \mathcal{L}_{n, k} \rightarrow \mathcal{P}_{n, k}$ and $f: \mathcal{P}_{n, k} \rightarrow \mathcal{W}_{n, k}$ gives a bijection $h=f \circ g: \mathcal{L}_{n, k} \rightarrow \mathcal{W}_{n, k}$ such that, if $h(\lambda)=w$ then $|\lambda|=\operatorname{inv} w$. In fact, squares of λ correspond bijectively to elements of Inv w.
(c) Partitions.

If $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is a partition then its size is

$$
|\lambda|=\lambda_{1}+\cdots+\lambda_{m} .
$$

Ex. If $\lambda=(4,3,3,2)$ then $|\lambda|=4+3+3+2=12$.
Note that $|\lambda|$ is the number of squares in its Ferrers diagram.
Consider the size generating function

$$
S_{n, k}(q)=\sum_{\lambda \in \mathcal{L}_{n, k}} q^{|\lambda|}
$$

Composing $g: \mathcal{L}_{n, k} \rightarrow \mathcal{P}_{n, k}$ and $f: \mathcal{P}_{n, k} \rightarrow \mathcal{W}_{n, k}$ gives a bijection $h=f \circ g: \mathcal{L}_{n, k} \rightarrow \mathcal{W}_{n, k}$ such that, if $h(\lambda)=w$ then $|\lambda|=\operatorname{inv} w$. In fact, squares of λ correspond bijectively to elements of Inv w.
Ex. When $n=5$ and $k=2$

$$
w=10110 \stackrel{h}{\longleftrightarrow} \lambda=\square_{1}^{0^{11}} 0
$$

(c) Partitions.

If $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is a partition then its size is

$$
|\lambda|=\lambda_{1}+\cdots+\lambda_{m} .
$$

Ex. If $\lambda=(4,3,3,2)$ then $|\lambda|=4+3+3+2=12$.
Note that $|\lambda|$ is the number of squares in its Ferrers diagram.
Consider the size generating function

$$
S_{n, k}(q)=\sum_{\lambda \in \mathcal{L}_{n, k}} q^{|\lambda|}
$$

Composing $g: \mathcal{L}_{n, k} \rightarrow \mathcal{P}_{n, k}$ and $f: \mathcal{P}_{n, k} \rightarrow \mathcal{W}_{n, k}$ gives a bijection $h=f \circ g: \mathcal{L}_{n, k} \rightarrow \mathcal{W}_{n, k}$ such that, if $h(\lambda)=w$ then $|\lambda|=\operatorname{inv} w$. In fact, squares of λ correspond bijectively to elements of Inv w.
Ex. When $n=5$ and $k=2$

$$
w=10110 \stackrel{h}{\longleftrightarrow} \lambda=\frac{\bigsqcup_{1} 11}{} 0
$$

(c) Partitions.

If $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is a partition then its size is

$$
|\lambda|=\lambda_{1}+\cdots+\lambda_{m} .
$$

Ex. If $\lambda=(4,3,3,2)$ then $|\lambda|=4+3+3+2=12$.
Note that $|\lambda|$ is the number of squares in its Ferrers diagram.
Consider the size generating function

$$
S_{n, k}(q)=\sum_{\lambda \in \mathcal{L}_{n, k}} q^{|\lambda|}
$$

Composing $g: \mathcal{L}_{n, k} \rightarrow \mathcal{P}_{n, k}$ and $f: \mathcal{P}_{n, k} \rightarrow \mathcal{W}_{n, k}$ gives a bijection $h=f \circ g: \mathcal{L}_{n, k} \rightarrow \mathcal{W}_{n, k}$ such that, if $h(\lambda)=w$ then $|\lambda|=\operatorname{inv} w$. In fact, squares of λ correspond bijectively to elements of Inv w.
Ex. When $n=5$ and $k=2$

$$
w=10110 \stackrel{h}{\longleftrightarrow} \lambda={\underset{1}{0^{1}} 0^{1} 0}^{\square_{1}}
$$

(c) Partitions.

If $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is a partition then its size is

$$
|\lambda|=\lambda_{1}+\cdots+\lambda_{m} .
$$

Ex. If $\lambda=(4,3,3,2)$ then $|\lambda|=4+3+3+2=12$.
Note that $|\lambda|$ is the number of squares in its Ferrers diagram.
Consider the size generating function

$$
S_{n, k}(q)=\sum_{\lambda \in \mathcal{L}_{n, k}} q^{|\lambda|}
$$

Composing $g: \mathcal{L}_{n, k} \rightarrow \mathcal{P}_{n, k}$ and $f: \mathcal{P}_{n, k} \rightarrow \mathcal{W}_{n, k}$ gives a bijection $h=f \circ g: \mathcal{L}_{n, k} \rightarrow \mathcal{W}_{n, k}$ such that, if $h(\lambda)=w$ then $|\lambda|=\operatorname{inv} w$. In fact, squares of λ correspond bijectively to elements of Inv w.
Ex. When $n=5$ and $k=2$

$$
w=10110 \stackrel{h}{\longleftrightarrow} \lambda=\square_{1}^{\square} 0^{11} 0
$$

(c) Partitions.

If $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is a partition then its size is

$$
|\lambda|=\lambda_{1}+\cdots+\lambda_{m} .
$$

Ex. If $\lambda=(4,3,3,2)$ then $|\lambda|=4+3+3+2=12$.
Note that $|\lambda|$ is the number of squares in its Ferrers diagram.
Consider the size generating function

$$
S_{n, k}(q)=\sum_{\lambda \in \mathcal{L}_{n, k}} q^{|\lambda|}
$$

Composing $g: \mathcal{L}_{n, k} \rightarrow \mathcal{P}_{n, k}$ and $f: \mathcal{P}_{n, k} \rightarrow \mathcal{W}_{n, k}$ gives a bijection $h=f \circ g: \mathcal{L}_{n, k} \rightarrow \mathcal{W}_{n, k}$ such that, if $h(\lambda)=w$ then $|\lambda|=\operatorname{inv} w$. In fact, squares of λ correspond bijectively to elements of Inv w.
Ex. When $n=5$ and $k=2$

$$
w=10110 \stackrel{h}{\longleftrightarrow} \lambda=\square_{1}^{\square^{11}} 0
$$

(c) Partitions.

If $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is a partition then its size is

$$
|\lambda|=\lambda_{1}+\cdots+\lambda_{m} .
$$

Ex. If $\lambda=(4,3,3,2)$ then $|\lambda|=4+3+3+2=12$.
Note that $|\lambda|$ is the number of squares in its Ferrers diagram.
Consider the size generating function

$$
S_{n, k}(q)=\sum_{\lambda \in \mathcal{L}_{n, k}} q^{|\lambda|}
$$

Composing $g: \mathcal{L}_{n, k} \rightarrow \mathcal{P}_{n, k}$ and $f: \mathcal{P}_{n, k} \rightarrow \mathcal{W}_{n, k}$ gives a bijection $h=f \circ g: \mathcal{L}_{n, k} \rightarrow \mathcal{W}_{n, k}$ such that, if $h(\lambda)=w$ then $|\lambda|=\operatorname{inv} w$. In fact, squares of λ correspond bijectively to elements of Inv w.
Ex. When $n=5$ and $k=2$

$$
w=10110 \stackrel{h}{\longleftrightarrow} \lambda=\square_{1}^{0^{11}} 0
$$

Theorem
For all $0 \leq k \leq n$ we have $\left[\begin{array}{l}n \\ k\end{array}\right]=S_{n, k}(q)$.
(d) Subspaces.
(d) Subspaces.

Let q be a prime power and \mathbb{F}_{q} be the Galois field with q elements.
(d) Subspaces.

Let q be a prime power and \mathbb{F}_{q} be the Galois field with q elements.
Consider the n-dimensional vector space \mathbb{F}_{q}^{n}.
(d) Subspaces.

Let q be a prime power and \mathbb{F}_{q} be the Galois field with q elements.
Consider the n-dimensional vector space \mathbb{F}_{q}^{n}. Let
$V_{n, k}(q)=\left\{W: W\right.$ is a k-dimensional subspace of $\left.\mathbb{F}_{q}^{n}\right\}$.
(d) Subspaces.

Let q be a prime power and \mathbb{F}_{q} be the Galois field with q elements.
Consider the n-dimensional vector space \mathbb{F}_{q}^{n}. Let

$$
V_{n, k}(q)=\left\{W: W \text { is a } k \text {-dimensional subspace of } \mathbb{F}_{q}^{n}\right\} .
$$

Ex. Let $q=3$.
(d) Subspaces.

Let q be a prime power and \mathbb{F}_{q} be the Galois field with q elements. Consider the n-dimensional vector space \mathbb{F}_{q}^{n}. Let

$$
V_{n, k}(q)=\left\{W: W \text { is a } k \text {-dimensional subspace of } \mathbb{F}_{q}^{n}\right\} .
$$

Ex. Let $q=3$. The row echelon forms for subspaces in $V_{4,2}(3)$ are

$$
\begin{aligned}
& {\left[\begin{array}{llll}
1 & 0 & * & * \\
0 & 1 & * & *
\end{array}\right]\left[\begin{array}{llll}
1 & * & 0 & * \\
0 & 0 & 1 & *
\end{array}\right]\left[\begin{array}{llll}
1 & * & * & 0 \\
0 & 0 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{llll}
0 & 1 & 0 & * \\
0 & 0 & 1 & *
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & * & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

where the stars are arbitrary elements of \mathbb{F}_{3}.
(d) Subspaces.

Let q be a prime power and \mathbb{F}_{q} be the Galois field with q elements.
Consider the n-dimensional vector space \mathbb{F}_{q}^{n}. Let

$$
V_{n, k}(q)=\left\{W: W \text { is a } k \text {-dimensional subspace of } \mathbb{F}_{q}^{n}\right\} .
$$

Ex. Let $q=3$. The row echelon forms for subspaces in $V_{4,2}(3)$ are

$$
\begin{aligned}
& {\left[\begin{array}{llll}
1 & 0 & * & * \\
0 & 1 & * & *
\end{array}\right]\left[\begin{array}{llll}
1 & * & 0 & * \\
0 & 0 & 1 & *
\end{array}\right]\left[\begin{array}{llll}
1 & * & * & 0 \\
0 & 0 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{llll}
0 & 1 & 0 & * \\
0 & 0 & 1 & *
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & * & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

where the stars are arbitrary elements of \mathbb{F}_{3}. Therefore

$$
\# V_{4,2}(3)=3^{4}+3^{3}+3^{2}+3^{2}+3+1=\left.\left[\begin{array}{l}
4 \\
2
\end{array}\right]\right|_{q=3}
$$

(d) Subspaces.

Let q be a prime power and \mathbb{F}_{q} be the Galois field with q elements.
Consider the n-dimensional vector space \mathbb{F}_{q}^{n}. Let

$$
V_{n, k}(q)=\left\{W: W \text { is a } k \text {-dimensional subspace of } \mathbb{F}_{q}^{n}\right\} .
$$

Ex. Let $q=3$. The row echelon forms for subspaces in $V_{4,2}(3)$ are

$$
\begin{aligned}
& {\left[\begin{array}{llll}
1 & 0 & * & * \\
0 & 1 & * & *
\end{array}\right]\left[\begin{array}{llll}
1 & * & 0 & * \\
0 & 0 & 1 & *
\end{array}\right]\left[\begin{array}{llll}
1 & * & * & 0 \\
0 & 0 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{llll}
0 & 1 & 0 & * \\
0 & 0 & 1 & *
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & * & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

where the stars are arbitrary elements of \mathbb{F}_{3}. Therefore

$$
\# V_{4,2}(3)=3^{4}+3^{3}+3^{2}+3^{2}+3+1=\left.\left[\begin{array}{l}
4 \\
2
\end{array}\right]\right|_{q=3}
$$

Theorem (Knuth, 1971)
For all $0 \leq k \leq n$ and q a prime power we have $\left[\begin{array}{l}n \\ k\end{array}\right]=\# V_{n, k}(q)$.

Outline

The theme

Variation 1: binomial coefficients

Variation 2: q-binomial coefficients

Variation 3: fibonomial coefficients

Coda: an open question and bibliography

The Fibonacci numbers are defined by $F_{1}=F_{2}=1$ and, for $n \geq 2$,

$$
F_{n}=F_{n-1}+F_{n-2} .
$$

The Fibonacci numbers are defined by $F_{1}=F_{2}=1$ and, for $n \geq 2$,

$$
F_{n}=F_{n-1}+F_{n-2}
$$

Ex. $F_{1}=1, F_{2}=1, F_{3}=2, F_{4}=3, F_{5}=5, F_{6}=8, \ldots$

The Fibonacci numbers are defined by $F_{1}=F_{2}=1$ and, for $n \geq 2$,

$$
F_{n}=F_{n-1}+F_{n-2}
$$

Ex. $F_{1}=1, F_{2}=1, F_{3}=2, F_{4}=3, F_{5}=5, F_{6}=8, \ldots$
A fibotorial is $F_{n}^{!}=F_{1} F_{2} \cdots F_{n}$.

The Fibonacci numbers are defined by $F_{1}=F_{2}=1$ and, for $n \geq 2$,

$$
F_{n}=F_{n-1}+F_{n-2}
$$

Ex. $F_{1}=1, F_{2}=1, F_{3}=2, F_{4}=3, F_{5}=5, F_{6}=8, \ldots$
A fibotorial is $F_{n}^{!}=F_{1} F_{2} \cdots F_{n}$. For $0 \leq k \leq n$, the corresponding fibonomial is

$$
\binom{n}{k}_{F}=\frac{F_{n}^{!}}{F_{k}^{!} F_{n-k}^{!}} .
$$

The Fibonacci numbers are defined by $F_{1}=F_{2}=1$ and, for $n \geq 2$,

$$
F_{n}=F_{n-1}+F_{n-2}
$$

Ex. $F_{1}=1, F_{2}=1, F_{3}=2, F_{4}=3, F_{5}=5, F_{6}=8, \ldots$
A fibotorial is $F_{n}^{!}=F_{1} F_{2} \cdots F_{n}$. For $0 \leq k \leq n$, the corresponding fibonomial is

$$
\binom{n}{k}_{F}=\frac{F_{n}^{!}}{F_{k}^{!} F_{n-k}^{!}}
$$

Ex. We have

$$
\binom{6}{3}_{F}=\frac{F_{6}^{!}}{F_{3}^{!} F_{3}^{!}}=\frac{F_{6} F_{5} F_{4}}{F_{3} F_{2} F_{1}}=\frac{8 \cdot 5 \cdot 3}{2 \cdot 1 \cdot 1}=60 .
$$

The Fibonacci numbers are defined by $F_{1}=F_{2}=1$ and, for $n \geq 2$,

$$
F_{n}=F_{n-1}+F_{n-2}
$$

Ex. $F_{1}=1, F_{2}=1, F_{3}=2, F_{4}=3, F_{5}=5, F_{6}=8, \ldots$
A fibotorial is $F_{n}^{!}=F_{1} F_{2} \cdots F_{n}$. For $0 \leq k \leq n$, the corresponding fibonomial is

$$
\binom{n}{k}_{F}=\frac{F_{n}^{!}}{F_{k}^{!} F_{n-k}^{!}}
$$

Ex. We have

$$
\binom{6}{3}_{F}=\frac{F_{6}^{!}}{F_{3}^{!} F_{3}^{!}}=\frac{F_{6} F_{5} F_{4}}{F_{3} F_{2} F_{1}}=\frac{8 \cdot 5 \cdot 3}{2 \cdot 1 \cdot 1}=60 .
$$

Theorem
The fibonomials satisfy $\binom{n}{0}_{F}=\binom{n}{n}_{F}=1$ and, for $0<k<n$,

$$
\binom{n}{k}_{F}=F_{k+1}\binom{n-1}{k}_{F}+F_{n-k-1}\binom{n-1}{k-1}_{F} .
$$

The Fibonacci numbers are defined by $F_{1}=F_{2}=1$ and, for $n \geq 2$,

$$
F_{n}=F_{n-1}+F_{n-2}
$$

Ex. $F_{1}=1, F_{2}=1, F_{3}=2, F_{4}=3, F_{5}=5, F_{6}=8, \ldots$
A fibotorial is $F_{n}^{!}=F_{1} F_{2} \cdots F_{n}$. For $0 \leq k \leq n$, the corresponding fibonomial is

$$
\binom{n}{k}_{F}=\frac{F_{n}^{!}}{F_{k}^{!} F_{n-k}^{!}}
$$

Ex. We have

$$
\binom{6}{3}_{F}=\frac{F_{6}^{!}}{F_{3}^{!} F_{3}^{!}}=\frac{F_{6} F_{5} F_{4}}{F_{3} F_{2} F_{1}}=\frac{8 \cdot 5 \cdot 3}{2 \cdot 1 \cdot 1}=60 .
$$

Theorem
The fibonomials satisfy $\binom{n}{0}_{F}=\binom{n}{n}_{F}=1$ and, for $0<k<n$,

$$
\binom{n}{k}_{F}=F_{k+1}\binom{n-1}{k}_{F}+F_{n-k-1}\binom{n-1}{k-1}_{F} .
$$

Corollary
For all $0 \leq k \leq n$ we have $\binom{n}{k}_{F} \in \mathbb{N}$.
S. and Savage were the first to give a simple combinatorial interpretation of $\binom{n}{k}_{F}$.
S. and Savage were the first to give a simple combinatorial interpretation of $\binom{n}{k}_{F}$. Other more complicated interpretations have been given by Benjamin-Plott, and by Gessel-Viennot.
S. and Savage were the first to give a simple combinatorial interpretation of $\binom{n}{k}_{F}$. Other more complicated interpretations have been given by Benjamin-Plott, and by Gessel-Viennot. A linear tiling, T, is a covering of a row of n squares with disjoint dominoes and monominoes.
S. and Savage were the first to give a simple combinatorial interpretation of $\binom{n}{k}_{F}$. Other more complicated interpretations have been given by Benjamin-Plott, and by Gessel-Viennot. A linear tiling, T, is a covering of a row of n squares with disjoint dominoes and monominoes. Let

$$
\mathcal{T}_{n}=\{T: T \text { a linear tiling of a row of } n \text { squares }\}
$$

S. and Savage were the first to give a simple combinatorial interpretation of $\binom{n}{k}_{F}$. Other more complicated interpretations have been given by Benjamin-Plott, and by Gessel-Viennot. A linear tiling, T, is a covering of a row of n squares with disjoint dominoes and monominoes. Let

$$
\mathcal{T}_{n}=\{T: T \text { a linear tiling of a row of } n \text { squares }\}
$$

Ex. We have
S. and Savage were the first to give a simple combinatorial interpretation of $\binom{n}{k}_{F}$. Other more complicated interpretations have been given by Benjamin-Plott, and by Gessel-Viennot. A linear tiling, T, is a covering of a row of n squares with disjoint dominoes and monominoes. Let

$$
\mathcal{T}_{n}=\{T: T \text { a linear tiling of a row of } n \text { squares }\}
$$

Ex. We have

$$
\mathcal{T}_{3}=\left\{\begin{array}{|l|l|l|}
\hline \bullet & \bullet & \bullet \\
& \mid \bullet & \bullet \bullet \\
\hline
\end{array}, \begin{array}{|l|l|l}
\hline \bullet & \bullet & \bullet \\
\hline
\end{array}\right\}
$$

Note that $\# \mathcal{T}_{3}=3=F_{4}$.
S. and Savage were the first to give a simple combinatorial interpretation of $\binom{n}{k}_{F}$. Other more complicated interpretations have been given by Benjamin-Plott, and by Gessel-Viennot. A linear tiling, T, is a covering of a row of n squares with disjoint dominoes and monominoes. Let

$$
\mathcal{T}_{n}=\{T: T \text { a linear tiling of a row of } n \text { squares }\}
$$

Ex. We have

$$
\mathcal{T}_{3}=\left\{\begin{array}{|l|l|l}
\bullet \bullet & \bullet & \bullet \\
\hline & \bullet & \bullet \\
\bullet & \bullet \\
\hline & \bullet & \bullet \\
\hline
\end{array}\right\}
$$

Note that $\# \mathcal{T}_{3}=3=F_{4}$.
Proposition
For all $n \geq 1$ we have $F_{n}=\# \mathcal{T}_{n-1}$.

A tiling of $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is a union of tilings of each λ_{i}.

A tiling of $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is a union of tilings of each λ_{i}. Let $\mathcal{T}_{\lambda}=\{T: T$ is a tiling of $\lambda\}$,

A tiling of $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is a union of tilings of each λ_{i}. Let $\mathcal{T}_{\lambda}=\{T: T$ is a tiling of $\lambda\}$,

Ex. If $\lambda=(3,2,2)$ then

A tiling of $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is a union of tilings of each λ_{i}. Let

$$
\mathcal{T}_{\lambda}=\{T: T \text { is a tiling of } \lambda\}
$$

$\mathcal{D}_{\lambda}=\left\{T \in \mathcal{T}_{\lambda}\right.$: every λ_{i} begins with a domino $\}$.
Ex. If $\lambda=(3,2,2)$ then

A tiling of $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is a union of tilings of each λ_{i}. Let

$$
\begin{aligned}
\mathcal{T}_{\lambda} & =\{T: T \text { is a tiling of } \lambda\} \\
\mathcal{D}_{\lambda} & =\left\{T \in \mathcal{T}_{\lambda}: \text { every } \lambda_{i} \text { begins with a domino }\right\}
\end{aligned}
$$

Ex. If $\lambda=(3,2,2)$ then

A tiling of $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is a union of tilings of each λ_{i}. Let

$$
\begin{aligned}
\mathcal{T}_{\lambda} & =\{T: T \text { is a tiling of } \lambda\} \\
\mathcal{D}_{\lambda} & =\left\{T \in \mathcal{T}_{\lambda}: \text { every } \lambda_{i} \text { begins with a domino }\right\}
\end{aligned}
$$

Ex. If $\lambda=(3,2,2)$ then

If $\lambda \subseteq k \times I$ then there is a dual partition $\lambda^{*}=\left(\lambda_{1}^{*}, \ldots, \lambda_{r}^{*}\right)$ where the λ_{j}^{*} are the column lengths of $(k \times I)-\lambda$.

A tiling of $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is a union of tilings of each λ_{i}. Let

$$
\begin{aligned}
\mathcal{T}_{\lambda} & =\{T: T \text { is a tiling of } \lambda\} \\
\mathcal{D}_{\lambda} & =\left\{T \in \mathcal{T}_{\lambda}: \text { every } \lambda_{i} \text { begins with a domino }\right\}
\end{aligned}
$$

Ex. If $\lambda=(3,2,2)$ then

If $\lambda \subseteq k \times I$ then there is a dual partition $\lambda^{*}=\left(\lambda_{1}^{*}, \ldots, \lambda_{r}^{*}\right)$ where the λ_{j}^{*} are the column lengths of $(k \times I)-\lambda$.

Ex. If $\lambda=(3,2,2) \subseteq 3 \times 4$ then $\lambda^{*}=(3,2)$:

A tiling of $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is a union of tilings of each λ_{i}. Let

$$
\begin{aligned}
\mathcal{T}_{\lambda} & =\{T: T \text { is a tiling of } \lambda\} \\
\mathcal{D}_{\lambda} & =\left\{T \in \mathcal{T}_{\lambda}: \text { every } \lambda_{i} \text { begins with a domino }\right\}
\end{aligned}
$$

Ex. If $\lambda=(3,2,2)$ then

If $\lambda \subseteq k \times I$ then there is a dual partition $\lambda^{*}=\left(\lambda_{1}^{*}, \ldots, \lambda_{r}^{*}\right)$ where the λ_{j}^{*} are the column lengths of $(k \times I)-\lambda$. Let

$$
\mathcal{F}_{n, k}=\bigcup_{\lambda \subseteq k \times(n-k)}\left(\mathcal{T}_{\lambda} \times \mathcal{D}_{\lambda^{*}}\right)
$$

Ex. If $\lambda=(3,2,2) \subseteq 3 \times 4$ then $\lambda^{*}=(3,2)$:

A tiling of $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is a union of tilings of each λ_{i}. Let

$$
\begin{aligned}
\mathcal{T}_{\lambda} & =\{T: T \text { is a tiling of } \lambda\} \\
\mathcal{D}_{\lambda} & =\left\{T \in \mathcal{T}_{\lambda}: \text { every } \lambda_{i} \text { begins with a domino }\right\}
\end{aligned}
$$

Ex. If $\lambda=(3,2,2)$ then

If $\lambda \subseteq k \times I$ then there is a dual partition $\lambda^{*}=\left(\lambda_{1}^{*}, \ldots, \lambda_{r}^{*}\right)$ where the λ_{j}^{*} are the column lengths of $(k \times I)-\lambda$. Let

$$
\mathcal{F}_{n, k}=\bigcup_{\lambda \subseteq k \times(n-k)}\left(\mathcal{T}_{\lambda} \times \mathcal{D}_{\lambda^{*}}\right)
$$

Ex. If $\lambda=(3,2,2) \subseteq 3 \times 4$ then $\lambda^{*}=(3,2)$:

and

A tiling of $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is a union of tilings of each λ_{i}. Let

$$
\begin{aligned}
\mathcal{T}_{\lambda} & =\{T: T \text { is a tiling of } \lambda\} \\
\mathcal{D}_{\lambda} & =\left\{T \in \mathcal{T}_{\lambda}: \text { every } \lambda_{i} \text { begins with a domino }\right\}
\end{aligned}
$$

Ex. If $\lambda=(3,2,2)$ then

If $\lambda \subseteq k \times I$ then there is a dual partition $\lambda^{*}=\left(\lambda_{1}^{*}, \ldots, \lambda_{r}^{*}\right)$ where the λ_{j}^{*} are the column lengths of $(k \times I)-\lambda$. Let

$$
\mathcal{F}_{n, k}=\bigcup_{\lambda \subseteq k \times(n-k)}\left(\mathcal{T}_{\lambda} \times \mathcal{D}_{\lambda^{*}}\right)
$$

Ex. If $\lambda=(3,2,2) \subseteq 3 \times 4$ then $\lambda^{*}=(3,2)$:

and

Proposition (S. and Savage, 2010)
For $0 \leq k \leq n$ we have $\binom{n}{k}_{F}=\# \mathcal{F}_{n, k}$.

Outline

The theme

Variation 1: binomial coefficients

Variation 2: q-binomial coefficients

Variation 3: fibonomial coefficients

Coda: an open question and bibliography

The nth Catalan number is

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n} .
$$

The nth Catalan number is

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n} .
$$

Ex. $C_{0}=1, C_{1}=1, C_{2}=2, C_{3}=5, C_{4}=14, C_{5}=42, \ldots$

The nth Catalan number is

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

Ex. $C_{0}=1, C_{1}=1, C_{2}=2, C_{3}=5, C_{4}=14, C_{5}=42, \ldots$
Theorem
We have $C_{0}=1$ and, for $n \geq 1, C_{n}=\sum_{i=0}^{n-1} C_{i} C_{n-i-1}$.

The nth Catalan number is

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

Ex. $C_{0}=1, C_{1}=1, C_{2}=2, C_{3}=5, C_{4}=14, C_{5}=42, \ldots$
Theorem
We have $C_{0}=1$ and, for $n \geq 1, C_{n}=\sum_{i=0}^{n-1} C_{i} C_{n-i-1}$.
Stanley's Catalan Addendum lists almost 200 combinatorial interpretations: http://www-math.mit.edu/~rstan/ec/catadd.pdf.

The nth Catalan number is

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

Ex. $C_{0}=1, C_{1}=1, C_{2}=2, C_{3}=5, C_{4}=14, C_{5}=42, \ldots$
Theorem
We have $C_{0}=1$ and, for $n \geq 1, C_{n}=\sum_{i=0}^{n-1} C_{i} C_{n-i-1}$.
Stanley's Catalan Addendum lists almost 200 combinatorial interpretations: http://www-math.mit.edu/~rstan/ec/catadd.pdf.
For example, let
$\mathcal{D}_{n}=\{P: P$ a $N E$ path from $(0,0)$ to (n, n) not going below $y=x\}$.

The nth Catalan number is

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

Ex. $C_{0}=1, C_{1}=1, C_{2}=2, C_{3}=5, C_{4}=14, C_{5}=42, \ldots$

Theorem

We have $C_{0}=1$ and, for $n \geq 1, C_{n}=\sum_{i=0}^{n-1} C_{i} C_{n-i-1}$.
Stanley's Catalan Addendum lists almost 200 combinatorial interpretations: http://www-math.mit.edu/~rstan/ec/catadd.pdf.
For example, let
$\mathcal{D}_{n}=\{P: P$ a $N E$ path from $(0,0)$ to (n, n) not going below $y=x\}$. Theorem
For $n \geq 0$ we have $C_{n}=\# \mathcal{D}_{n}$.

The nth Catalan number is

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

Ex. $C_{0}=1, C_{1}=1, C_{2}=2, C_{3}=5, C_{4}=14, C_{5}=42, \ldots$
Theorem
We have $C_{0}=1$ and, for $n \geq 1, C_{n}=\sum_{i=0}^{n-1} C_{i} C_{n-i-1}$.
Stanley's Catalan Addendum lists almost 200 combinatorial interpretations: http://www-math.mit.edu/~rstan/ec/catadd.pdf.
For example, let
$\mathcal{D}_{n}=\{P: P$ a $N E$ path from $(0,0)$ to (n, n) not going below $y=x\}$.
Theorem
For $n \geq 0$ we have $C_{n}=\# \mathcal{D}_{n}$.
Define the fibocatalan numbers to be

$$
C_{n, F}=\frac{1}{F_{n+1}}\binom{2 n}{n}_{F}
$$

The nth Catalan number is

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

Ex. $C_{0}=1, C_{1}=1, C_{2}=2, C_{3}=5, C_{4}=14, C_{5}=42, \ldots$

Theorem

We have $C_{0}=1$ and, for $n \geq 1, C_{n}=\sum_{i=0}^{n-1} C_{i} C_{n-i-1}$.
Stanley's Catalan Addendum lists almost 200 combinatorial interpretations: http://www-math.mit.edu/~rstan/ec/catadd.pdf.
For example, let
$\mathcal{D}_{n}=\{P: P$ a $N E$ path from $(0,0)$ to (n, n) not going below $y=x\}$. Theorem
For $n \geq 0$ we have $C_{n}=\# \mathcal{D}_{n}$.
Define the fibocatalan numbers to be

$$
C_{n, F}=\frac{1}{F_{n+1}}\binom{2 n}{n}_{F}
$$

It is not hard to show $C_{n . F} \in \mathbb{N}$ for all n.

The nth Catalan number is

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

Ex. $C_{0}=1, C_{1}=1, C_{2}=2, C_{3}=5, C_{4}=14, C_{5}=42, \ldots$
Theorem
We have $C_{0}=1$ and, for $n \geq 1, C_{n}=\sum_{i=0}^{n-1} C_{i} C_{n-i-1}$.
Stanley's Catalan Addendum lists almost 200 combinatorial interpretations: http://www-math.mit.edu/~rstan/ec/catadd.pdf.
For example, let
$\mathcal{D}_{n}=\{P: P$ a $N E$ path from $(0,0)$ to (n, n) not going below $y=x\}$. Theorem
For $n \geq 0$ we have $C_{n}=\# \mathcal{D}_{n}$.
Define the fibocatalan numbers to be

$$
C_{n, F}=\frac{1}{F_{n+1}}\binom{2 n}{n}_{F}
$$

It is not hard to show $C_{n . F} \in \mathbb{N}$ for all n. Lou Shapiro asked: Can one find a combinatorial interpretation?

References.

1. Andrews, George E. The theory of partitions. Reprint of the 1976 original. Cambridge Mathematical Library. Cambridge University Press, Cambridge, (1998).
2. Benjamin, A. T., and Plott, S. S. A combinatorial approach to Fibonomial coefficients, Fibonacci Quart. 46/47 (2008/09), 7-9.
3. Gessel, I., and Viennot, G. Binomial determinants, paths, and hook length formulae. Adv. in Math. 58 (1985), 300-321.
4. Knuth, Donald E. Subspaces, subsets, and partitions. J. Combinatorial Theory Ser. A 10 (1971) 178-180.
5. MacMahon, Percy A. Combinatory Analysis. Volumes 1 and 2. Reprint of the 1916 original. Dover, New York, (2004).
6. Sagan, Bruce E., and Savage, Carla D. Combinatorial interpretations of binomial coefficient analogues related to Lucas sequences. Integers 10 (2010), A52, 697-703.
7. Stanley, Richard P. Enumerative combinatorics. Volume 1. Second edition. Cambridge Studies in Advanced Mathematics, 49. Cambridge University Press, Cambridge, (2012).

THANKS FOR LISTENING!

