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ABSTRACT: The CFTR-associated ligand PDZ domain
(CALP) binds to the cystic fibrosis transmembrane
conductance regulator (CFTR) and mediates lysosomal
degradation of mature CFTR. Inhibition of this interaction
has been explored as a therapeutic avenue for cystic fibrosis.
Previously, we reported the ensemble-based computational
design of a novel peptide inhibitor of CALP, which resulted in
the most binding-efficient inhibitor to date. This inhibitor,
kCALO1, was designed using osPREY and evinced significant
biological activity in in vitro cell-based assays. Here, we report
a crystal structure of kCALO1 bound to CALP and compare
structural features against iCAL36, a previously developed
inhibitor of CALP. We compute side-chain energy landscapes

for each structure to not only enable approximation of binding thermodynamics but also reveal ensemble features that
contribute to the comparatively efficient binding of kCALO1. Finally, we compare the previously reported design ensemble for
kCALO1 vs the new crystal structure and show that, despite small differences between the design model and crystal structure,
significant biophysical features that enhance inhibitor binding are captured in the design ensemble. This suggests not only that
ensemble-based design captured thermodynamically significant features observed in vitro, but also that a design eschewing

ensembles would miss the kCALO1 sequence entirely.

1. INTRODUCTION

Interactions between proteins and short linear motif peptides
are important in many cellular contexts.'" One such class of
peptide-binding proteins is the PDZ (PSD-9S, discs large, ZO-
1) domain family, characterized by an 80—90 residue motif®
that adopts a conserved fold composed of 2—3 a-helices and
5—6 p-strands and binds C-terminal peptides through S-sheet
interactions.” These domains commonly modulate protein
localization and complex assembly*™® and regulate cell
signaling,”* thereby playing critical roles in auditory and visual
systems; epilepsy, pain, and addiction;”'" synapse for-
mation;® cancer;”¥'*"® and cystic fibrosis."* ™"
Protein—peptide interactions have been implicated as
therapeutic targets in cystic fibrosis (CF), a genetic disease
characterized by defects in the cystic fibrosis transmembrane
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conductance regulator (CFTR) that result in impaired chloride
ion transport."* Approximately 90% of CF patients are
homozygous or heterozygous for the F508del
(c.1521_1523delCTT) mutation,'”'®'” which encodes a
protein variant F508del-CFTR (p.PheS508del) with severe
loss of function. This variant exhibits impaired folding,
increased degradation by endoplasmic reticulum (ER) quality
control machinery,”" reduced capacity for CI~ transport,'* and
decreased half-life at the plasma membrane.”> CFTR is
recycled from the cell membrane and preferentially targeted
for lysosomal degradation by interaction of the CFTR C-
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terminus with the CFTR-associated ligand PDZ domain
(CALP).">'® CALP has been implicated in both decreasing
concentration of CFTR at the membrane'® and arresting
CFTR trafficking in the ER,"” and knockdown of CALP has
been shown to rescue transepithelial chloride transport in
polarized CFBE4lo- cells expressing F508del-CFTR by
increasing the concentration of F508del-CFTR at the plasma
membrane.”> Hence, inhibition of the interaction between the
CFTR C-terminal peptide and CALP is a potential therapeutic
avenue for CF. Understanding of the CALP:CFTR binding
interaction is critical for the development of therapeutic
inhibitors.

Previous work toward inhibitor development resulted
in extensive characterization of the structural and stereo-
chemical components of CALP binding. The structure of
CALP bound to the CFTR C-terminal peptide was solved by
solution NMR”* with well-resolved interactions between the 4
C-terminal peptide residues (P7>—P°) and CALP. This
structure revealed canonical class 1 PDZ interactions™
including those between Leu P° and a hydrophobic pocket
between secondary-structure elements a2 and f2, and the
essential hydrogen bond between Thr P~ and a histidine
residue in helix a2. Peptide screening and iterative
optimization using substitutional analysis™ revealed significant
affinity effects of residues at other peptide positions up to P™°
and resulted in a decapeptide inhibitor (iCAL36, ANSRWPT-
SII) with an affinity of 22.6 + 8.0 uM>>*° that rescued
functional CFTR activity as assessed by in vitro Ussing
chamber assays.”” Crystal structures of iCAL36 (and
substituted peptide variants) in complex with CALP***’
revealed structural features that influence CALP binding and
selectivity. In particular, shifts in peptide orientation and
location, along with conformational shifts in the carboxylate-
binding loop (characterized by a X®,G®, sequence motif,
where @, represents a hydrophobic and X is any residue), affect
the binding geometry and specificity of the peptide P°
residue,26 allowing CALP to accommodate both Leu and Ile
at P°. Additionally, side-chain interactions at P, P73, P~ and
P~® modulate affinity and specificity of CALP binding.”’
Finally, despite the fact that CALP:CFTR binding is thought
to be primarily driven by enthalpic effects,”® NMR data and
molecular dynamics (MD) simulations suggest that entropy
may play a role in modulating CALP binding,”* a hypothesis
which is reflected in studies of other PDZ domains.”' ~**

Previously,” we developed the most binding-efﬁcient36
inhibitor of CALP to date using the ospREY’~ protein design
software package, suggesting that components of CALP
binding can be effectively captured using provable, ensemble-
based computational protein design algorithms. Starting from
the solution NMR structure of CALP:CFTR,** we used the K*
algorithm®® to compute approximations to K,—the K*
score—for CALP binding to =8000 hexameric C-terminal
peptides (residue positions P~>—P). Retrospective predictions
on 6223 previously characterized sequences™’ showed that
our algorithm was able to effectively classify sequences by
binding affinity to CALP, with an area under the receiver
operating characteristic (ROC) curve of 0.84. Additionally,
OsPREY designs on 2166 sequences resulted in novel peptides
that bind tightly to CALP. All of the top 11 prospective
predictions were experimentally shown to bind with high
affinity to CALP, and the tightest binding hexamer, kCALO1
(Ac-WQVTRV), bound with K, = 2.3 + 0.2 uM.* kCALO1
bound more tightly than both the previous best hexamer
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(iCAL35, WQTSII, K, = 140 + 1 uM)* and decamer
(iCAL36, ANSRWPTSII, K, = 22.6 + 8.0 uM)> peptide
inhibitors. Despite its small size (MW 829 Da), kCALO1 binds
with an affinity comparable to a much larger (MW 1502 Da)
fluorescein-modified version of iCAL36 (F*-iCAL36, K; = 1.3
+ 0.1 uM),” yielding a much better binding efficiency for
kCALO1 (for molecular weights and inhibition constants of
various inhibitors see Table S1). Furthermore, kCALO1
rescued chloride ion transport activity of F508del-CFTR in
cell-based assays.”>*” Ensemble-based design algorithms were
shown to be critical for the success of this design: Ranking by
energy of the global minimum energy conformations
(GMECs) resulted in poor prediction accuracy and little
overlap with the ensemble-based predictions.”® These data not
only suggest that computational structural protein design
(CSPD) algorithms can capture features that contribute to
CALP:peptide binding, but also that ensemble-based or
entropic effects are critical for prediction accuracy.

Indeed, computational designs are more biophysically
accurate when they model protein thermodynamic ensem-
bles.”>****™*" The objectives of CSPD algorithms are to (1)
compute biophysical or thermodynamic properties of a protein
or protein complex and (2) efficiently search for optimal
sequences given an objective function. Without loss of
generality, we choose binding affinity as our biophysical
property of interest. CSPD algorithms search over a user-
specified input model (viz., a structural model, allowed side-
chain and backbone flexibility, allowed mutations, energy
function, etc.’’). Because proteins exist as thermodynamic
ensembles,*'"*® principled algorithms should exploit statistical
thermodynamics of non-covalent binding, and therefore
require approximation of the partition function.”"*’ However,
because the conformation space available to proteins in vivo
and in vitro is massive and grows exponentially with the
number of flexible amino acid residues, protein design
algorithms often make simplifying modeling assumptions to
allow tractable computation. Such assumptions often include
(1) modeling only rigid, discrete side-chain configurations, or
rotamers,”° and a small set of discrete backbone conforma-
tions,”' 7 (2) considering (or approximating) only a single
global minimum energy conformation (GMEC),”"”*™ and
(3) approximating the partition function using stochastic,
heuristic sampling methods.*"~®> However, these assumptions
(1) fail to model small, commonly observed side-chain and
backbone movements, (2) entirely omit conformational
entropy, and (3) often fail to find even the GMEC.”’
Algorithms in the OSPREY software package efficiently solve
protein design problems without these simplifications.””

Recently we developed the MARK* algorithm, which, in
addition to provably and efficiently approximating partition
functions for input model states (i.e., bound complex, unbound
protein, and ligand), allows visualization of the entire energy
landscape accessible to a protein input model.”” MARK*
provably bounds the energy and statistical weight of every
conformation in the input model conformation space, allowing
designers to compute and visualize changes in conformation
distribution, instead of merely analyzing changes to a small set
of low-energy conformations, or to ensemble averaged values
like free energy or K,. By computing both a conformation
distribution and provably approximating energies for every
conformation, MARK* enables visualization of the energy
landscape. This novel capability complements traditional
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structural analysis by providing insight into entropic and
dynamic contributions to binding.

In this work, we report a 1.7 A resolution crystal structure of
a decapeptide variant of the peptide inhibitor kCALO1 bound
to CALP (PDB ID: 60V7). To evaluate the structural basis for
the enhanced binding efficiency of kCALO1, we compare this
structure to that of a previously developed decapeptide
inhibitor of CALP, iCAL36 (PDB ID: 4E34).° In addition
to performing traditional structural analysis, we compute
energy landscapes for bound and unbound structural models
for CALP:kCALO1 and CALP:iCAL36 using MARK*. From
these landscapes we compute approximations to the free
energy, internal energy, and entropy for each model state (i.e.,
bound complex, unbound protein, unbound ligand) and use
these quantities to model thermodynamics of binding for
CALP:kCALO1 and CALP:iCAL36. Additionally, we analyze
the energy landscapes for dynamic effects and show that these
energy landscapes foreground important structural features of
binding and reveal dynamic features that may contribute to the
efficient binding of kCALO1. We conclude that investigation of
energy landscapes complements traditional analysis of one or
few low-energy structures represented in crystal structures and
provides important information about the entire conforma-
tional ensemble that is available to a protein structure model.
Finally, to assess the extent to which designs reported in ref 35
are a result of accurate modeling of structural and dynamic
components of CALP binding, we compare the design output
ensemble for kCALO1 to the newly solved crystal structure. We
show that, despite notable differences between the NMR-based
CALP structure used as design input vs the bound crystallo-
graphic conformation of CALP, many significant crystal
structure features are captured in the design output ensemble.
This suggests that the success of the ensemble-based
computational design of kCALO1* was a result of effective
modeling of structural and dynamic features of binding.

An overview of our system, model, and data is as follows.
Table 1 shows data collection and refinement statistics for the
crystal structure of CALP:kCALO1. Figure 1 depicts the crystal
structure of CALP:kCALO1 and important structural features.
Figure 2 shows a detailed structural comparison between the
carboxylate-binding loops of CALP:kCALO1 and
CALP:iCAL36. Figure 3 details structural views of predicted
conformational heterogeneity at P°. Figure 4 depicts energy
landscape diagrams for CALP:kCALO1. Figure 5 shows energy
landscape diagrams for CALP:iCAL36. Figure 6 shows a
schematic diagram of structural comparisons performed in this
work. Figure 7 shows the original design model reported in ref
35 and highlights its similarity to the crystal structure of
CALP:kCALO1.

2. METHODS

2.1. Structure Determination of CALP:kCALO1. Re-
combinant CAL PDZ (CALP; UniProt accession number
Q9HD26-2; residues 278—362) was expressed and purified as
described previously.”* Briefly, an expression construct was
engineered in pET16b containing an N-terminal decahistidine
tag, a short linker, and a human rhinovirus (HRV) 3C protease
cleavage site, followed by the CALP sequence. The construct
was transformed into E. coli BL21 (DE3) RIL cells; expression
was induced as previously described®* (except that TB medium
was used), and protein was purified by nickel-nitrilotriacetic
acid (NiNTA) affinity chromatography and size-exclusion
chromatography (SEC). Following removal of the affinity tag

Table 1. Data Collection and Refinement Statistics for
CALP:kCALO1 Complex (PDB ID: 60V7)

Data Collection

space group P2,2,2,

unit cell dimensions a, b, ¢ (A) 43.6, 60.8, 81.2

resolution” (A) 48.6—1.71 (1.83—1.71)

Rym” (%) 10.8 (95.9)

/o, 14.0 (2.0)

completeness (%) 99.6 (99.8)
Refinement

total number of reflections 23681

reflections in test set 1160

Ryon/Reee” (%) 18.2/21.4 (28.1/30.7)

no. atoms protein 1470

no. atoms water 178

Ramachandran plot® (%) 98.4,1.6,0,0

B, (A%)

protein 22.3

solvent 33.1

bond length RMSD (&) 0.01

bond angle RMSD (deg) 1.18

“Values in parentheses are for data in the highest-resolution shell.
bRSym = Y2 M(h) — LW/ X, 2 1(h), where I,(h) and I(h) values
are the ith and mean measurements of the intensity of reflection h.
Ruorkc = 2Fapsls = Feadyl/ XlFopyy b € {working set}. Ry is
calculated as R, for the reflections h € {test set}. “Core, allowed,
generously allowed, disallowed.

and linker by HRV-3C protease cleavage, CALP was recovered
in the flow-through fraction of a NiNTA affinity column and
further purified by SEC. To facilitate crystallization, kCALO1
was synthesized as a decapeptide (ANSRWQVTRYV) contain-
ing four N-terminal residues (in italics) that form lattice
contacts in other CALP:peptide co-crystals.””*”***° The
kCALO1 decapeptide was synthesized using standard Fmoc
solid-phase peptide synthesis and purified by reverse-phase
HPLC. Peptide mass was confirmed using liquid chromatog-
raphy/mass spectrometry (LC/MS). Using the hanging-drop
method, CALP:kCALO1 co-crystals were obtained by mixing 1
mM kCALO1 and 6 mg/mL CALP with reservoir solution
containing 25% (w/v) PEG 8000, 5% (v/v) PEG 400, 150 mM
sodium chloride, and 100 mM Tris pH 8.5. Crystals were
transferred into cryoprotectant solution (25% [w/v] PEG
8000, 15% [v/v] PEG 400, 150 mM sodium chloride, and 100
mM Tris pH 8.5) and flash-cooled in a liquid-nitrogen bath.
Oscillation diffraction data were recorded at 100 K on
beamline BL9-2 at the Stanford Synchrotron Radiation
Lightsource (SSRL) over a 180° range with 0.5 s, 0.2°
exposures. Reflection intensities were integrated and scaled
using the XDS package®® (version 20190315). Initial phase
estimates were obtained by molecular replacement using
Phaser®” within the Phenix package68 (version 1.15.2) and
using PDB ID 4E34°° as the search model (containing chains
A and C only). Subsequent model building and refinement
were performed using Phenix and Coot® (version 0.8.9.2) to
generate the final model of CALP in a complex with the
kCALO1 decapeptide at 1.71 A resolution. Data quality and
refinement statistics are reported in Table 1. The coordinates
and structure factors have been deposited in the Protein Data
Bank (www.rcsb.org) with ID 60V7.

2.2. Computational Methods. The new crystal structure
of CALP:kCALO1 (PDB ID: 60V7, protomer A) and the
crystal structure of CALP:iCAL36 (PDB ID: 4E34, protomer
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| CALP (60V7)
| kCALO1 (60V7)

Figure 1. Crystal structure of CALP:kCALO1 (PDB ID: 60V7) displays canonical class 1 PDZ binding and favorable interactions at P~ and P™*.
The CALP and kCALO1 crystal structures are shown in green and pink, respectively (protomer A). Hydrogen bonds predicted by the Probe”
software are represented as dashed yellow lines. The kCALO1 peptide binds in the groove defined by helix @2 and strand 2. (A) Gln P™* makes
favorable hydrogen bonds with Glu300 or His301 and forms van der Waals interactions with His341. Additionally, Gln P™* can coordinate with
several water molecules, shown as red, nonbonded oxygens. (B) kCALOI binds in the groove defined by helix a2 and strand 2 and forms an
antiparallel $-sheet interaction with strand $2. The C-terminus of kCALO1 forms favorable hydrogen bonds with the carboxylate-binding loop
(CBL). (C) kCALO1 displays features of class 1 PDZ binding,”® including the conserved hydrogen bond between Thr P~ and His341, as well as
the interaction between the Val P side chain and the hydrophobic pocket. (D) Arg P™" appears to form favorable 7-interactions with His311 and
also coordinates with several waters.

CALP:kCALOL(60V7)
p1 CALP:ICAL36(4E34_A)
CALP:ICAL3G(4E34_B)

Figure 2. Binding geometry of kCALO1 P° and the carboxylate-binding loop. Superimposed views of the P interaction with the carboxylate-binding
loop (CBL) and hydrophobic pocket (side chains shown as lines) are shown for CALP:kCALO1 protomer A (green:pink), CALP:iCAL36
protomer A (blue:orange), and CALP:iCAL36 protomer B (purple:yellow). (A) Superimposed C,, traces show that the CALP conformation at the
Ile @, C, is more similar to the CALP:iCAL36 protomer A conformation than the CALP:iCAL36 protomer B conformation. (B) A pairwise
comparison shows that the CALP:kCALO1 CBL geometry matches most closely with CALP:iCAL36 protomer A, seen at the side chains at CBL
positions @, and @,. However, the kCALO1 peptide P° shifts toward the CBL by 0.7 A relative to the CALP:iCAL36 structure. (C) A pairwise
comparison shows that the CALP:kCALOI peptide orientation matches most closely with CALP:iCAL36 protomer B, seen at position P°.
However, the CALP:iCAL36 CBL shifts outward by 1.3 A relative to the CALP:kCALO1 structure, and the hydrophobic pocket expands due to
changes in rotamer at CBL position ®,.

A) were used to model energy landscapes of CALP binding to
kCALO1 and iCAL36, respectively. For each structure, we
computed energy landscapes for three states: the bound
CALP:peptide complex, the unbound CALP, and the unbound
peptide. This was accomplished by first defining a set of
accessible conformations for each state and then using the
MARK* algorithm®® in osrey 3.0°" to compute both a

provable approximation to the partition function value and an
approximation to the energy landscape.

Sets of accessible conformations, or conformation spaces,
were defined as follows for each state. These conformation
spaces are an approximation to the ensemble of conformations
available to each state in vivo. First, hydrogens were added to
each crystal structure using the MolProbity server’” in order to
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Figure 3. Energy landscape analysis reveals conformational heterogeneity at Val P° for CALP:kCALO1. Energy landscape analysis of bound
kCALO1 indicates three rotamers at peptide P° that contribute significantly to the partition function. We refer to these rotamers as m, t, or p, which
describe the valine N—C,—C;—C,, dihedral angle as minus 60 (~—60°), trans (~180°), or plus 60 (~60°), respectively, conforming to the
convention defined in ref S0. This landscape analysis (see Figure 4C, outermost ring) suggests that the complex can sample any of these rotamers
with relatively high probability, but that the m rotamer will be most occupied, and the p rotamer will be least occupied. Conformations containing
each of these three rotamers were selected from the bound kCALO1 ensemble. Interactions between the P° side-chain atoms and the CALP
structure are shown using Probe dots,”® where green and blue dots indicate favorable interactions, yellow dots indicate small overlaps, and red and
pink lines show steric clashes. (A) The m rotamer forms favorable interactions with Thr P72, Val345, Leu348, Ile ®,, and Leu ®,. (B) The t
rotamer forms favorable interactions with Thr P72, Val345, Ser349, Leu348, and Ile ®,. The slight overlaps (yellow dots) generated due to the
interaction with Leu348, along with the lack of interaction with Leu @, suggest that this conformation is slightly less favorable than the m rotamer.
(C) The p rotamer forms favorable interactions with Ser349, Leu348, Ile ®,, and Leu ®,. Slight overlaps (yellow dots) can be seen in interactions
with Leu348, Ile ®,, and Leu @, and there is no interaction with Val34S, suggesting that this rotamer may be slightly less favorable than either the

m or t rotamers. Nevertheless, all three rotamers are well-sampled in the ensemble and contribute significantly to the partition function.

generate protonated crystal structures. Backbone atom coor-
dinates for the bound complex state were obtained directly
from protonated crystal structures 60V7 (for the
CALP:kCALO1 state) and 4E34 (for the CALP:iCAL36
state). Nine residues for CALP and the six most C-terminal
residues for kCALO1 or iCAL36 (for a total of 15 residues in in
each bound complex, see Table S2) were modeled as
continuously flexible using continuous rotamers’ "’ in OSPREY.
As in refs 46, 63, 71, and 73, rotamers from the Penultimate
Rotamer Library’® were allowed to adopt any side-chain
conformation such that all y-angles are within +9° of their
modal y-angles. For all other residues, side-chain coordinates
were obtained from protonated crystal structures. Models for
unbound CALP and peptide states were obtained by removing
all atoms of the peptide or CALP structure, respectively, from
the complex state. Thus, we defined approximations to the
conformational ensembles for bound and unbound states,
herein referred to as models, for CALP:kCALO1 and
CALP:iCAL36.

For each model, we computed e-approximate bounds on the
value of the partition function to a deterministic, guaranteed
accuracy of € < 0.01 using the MARK* algorithm® in OsPREY.
All computations were run on 40—48 core Intel Xeon nodes
with up to 500 GB of memory. As proved previously,”® not
only does MARK* compute a provable e-approximation to the
partition function, it also bounds the energy landscape by
provably approximating the energy and therefore statistical
weight of all model conformations in the conformation space.

2.3. Entropy, Internal Energy, and Helmholtz Free
Energy Calculation. Aggregate values for the ensembles in
each state were computed by bounding the energy for each
conformation in the ensemble, and combining these energy
bounds. For each bound and unbound state, we first computed
bounds on the energy of each conformation in the conforma-
tional ensemble defined by that state, as was done in refs 35,

37, 44, 63, 74, and 75 described in Section 2.2. Using these
energy bounds, we then computed bounds on the correspond-
ing Boltzmann-weighted partition function
Zc = X ccexp(—E(c)/RT), where E is a function that returns

the energy of conformation ¢, by computing and summing
bounds on the Boltzmann weights for conformations ¢ in that
state C (see ref 63 for details). We then divided the upper
bound on Boltzmann weight of ¢ by the upper bound on the
partition function to compute the probability p. for each
conformation ¢ within the ensemble. Using these probabilities,
we then calculated the entropy S=-RY _. plnp and

internal energy U=} _.pE(c) of the ensemble and

ceC
combined these two values to compute the Helmholtz free
energy F = U — TS at a temperature of 298.15 K. Here, E is a
function that returns the lower bound on the energy of
conformation c. We also used the upper bounds on Boltzmann
weight for each conformation to compute energy landscape
diagrams,63 which are explained in Section 2.4.

Although the K* score exhibits good Spearman’s rank
correlation with experimental K, values,””’* the correlation
between K* scores and K, is not yet quantitative. First, most
physics-based energy functions are based on small-molecule
energetics, which can overestimate van der Waals terms and
thereby overestimate internal energy. Additionally, the input
models used in the current computation model only a subset of
biologically available flexibility; in this case, flexibility was
restricted to up to 4 side-chain y angles per residue. We
allowed side-chain y angles to minimize continuously within
+9° of modal y-angles but did not model backbone flexibility.
Furthermore, we did not model explicit waters, instead relying
on the EEF1 implicit solvation model’® in osPREY. As a result,
our models likely underestimate entropy and overestimate
internal energy. Therefore, we scaled our thermodynamic
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Figure 4. Energy landscape analysis reveals components of binding thermodynamics for CALP:kCALOl. Upper bounds on the Boltzmann-
weighted partition function computed using the MARK* algorithm® in osprey’” for a 15-residue design at the protein—protein interface of
CALP:kCALO1 are shown as colored ring charts. A brief explanation of the ring chart diagram can be found in Section 2.4. (A, B) Energy
landscapes for CALP in the bound (A) and unbound (B) states show the change in conformation distribution induced by binding. (A) Bound
CALP has a narrow distribution, with the GMEC accounting for nearly 50% of the partition function. (B) In contrast, unbound CALP shows a
wide conformation distribution, with the unbound GMEC accounting for roughly 5% of the partition function, with conformational entropy
generated largely by residues Thr296 and His301, indicated by a large number of similarly sized arcs at their corresponding rings. Importantly, the
bound and unbound GMECs are not the same conformation and do not have the same energy. (C, D) Energy landscapes for kCALO1 in the bound
(C) and unbound (D) states show a similar change in conformation distribution upon binding. (C) The bound kCALO1 energy landscape shows
that the GMEC accounts for roughly 5% of the partition function. Even so, the landscape suggests considerable entropy, driven by residues at P™,
P!, and P7% and P°. Prediction of conformational heterogeneity at P° is particularly interesting given its buried location. (D) Conversely, unbound
kCALO1 shows a very high-entropy conformation distribution, with many conformations that contribute to the partition function, as seen by the
presence of many small arcs in the outer ring. This is consistent with our expectations for an extended peptide backbone. Thermodynamic
parameters calculated from these partition functions (see Section 3.2.2) indicate that binding of kCALO1 to CALP results in a decrease in internal
energy and a decrease in entropy, which is represented visually in these energy landscapes.

values, decreasing internal energy U by a factor of 4, similar to
the method described in ref 63.

2.4. Interpretation of Energy Landscape Diagrams.
Visual representations of computed energy landscapes can be
found in Figures 4 and 5. For a full description of ring diagram
visualizations, see ref 63. Briefly, each concentric ring
represents a design amino acid residue, with each ring arc
representing a single rotamer assignment to that residue given
the residue assignments of the inner arcs, or “partial
conformation”. Therefore, any arc in the outermost ring
represents a “full conformation”, where all amino acid positions
are each assigned a single rotamer. The angle of any given arc
corresponds to the partition function contribution of all
conformations that contain the given partial conformation. The

color of any given arc corresponds to the smallest energy
difference between the GMEC and the lowest-energy
conformation that contains the given partial conformation,
with small energy differences colored green, and larger energy
differences colored red. Notably, white gaps are indicative of
relatively high-energy conformations that individually contrib-
ute less than 0.1% of the partition function value. Therefore, a
ring diagram visually represents the entire energy landscape for
a design problem, showing the distribution of conformations
according to their probability.

3. RESULTS AND DISCUSSION

3.1. Structural Analysis of CALP:kCALO1. Co-crystals
were formed with recombinant CALP and a decapeptide
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Figure S. Energy landscape analysis reveals components of binding thermodynamics for CALP:iCAL36. Upper bounds on the Boltzmann-weighted
partition function computed using the MARK* algorithm® in osprey*” for a 15-residue design at the protein—protein interface of CALP:iCAL36
are shown as colored ring charts. A brief explanation of the ring chart diagram can be found in Section 2.4. (A, B) Energy landscapes for CALP in
the bound and unbound states show the change in conformation distribution induced by binding. (A) Bound CALP has a narrower distribution,
with the GMEC accounting for roughly 20% of the partition function. (B) Unbound CALP shows a wide conformation distribution, with the
unbound GMEC accounting for roughly 2% of the partition function, with conformational variation in multiple residues, indicated by a large
number of similarly sized arcs at multiple rings. (C, D) Energy landscapes for iCAL36 in the bound and unbound states show a change in
conformation distribution upon binding. (C) The bound iCAL36 energy landscape exhibits a lower-entropy distribution, with the GMEC
accounting for roughly 3% of the partition function. Even so, the landscape suggests considerable heterogeneity, much of which is attributable to
variation at P2 and P~>. Interestingly, in contrast to the bound kCALO1 landscape, little heterogeneity is predicted at P°. (D) Unbound iCAL36
has a high-entropy conformation distribution, with many conformations that contribute to the partition function, as seen by the presence of many
small arcs in the outer ring. This is consistent with our expectations for an extended peptide backbone. Thermodynamic parameters calculated from
these partition functions (see Section 3.2.2) indicate that binding of iCAL36 to CALP results in a decrease in internal energy and a decrease in
entropy, which is represented visually in these energy landscapes.

variant of kCALO1 with a four-residue N-terminal extension
(ANSRWQVTRYV, extension in italics). The refined model
exhibits an excellent fit to the density, with R, and Rg,, of
0.182 and 0.214, respectively, and lies within typical peptide
geometry constraints (Table 1). The asymmetric unit consists
of two protomers (A and B) of CALP complexed with kCALO1
(Figure S1A). The 9 or 8 C-terminal residues of the peptide
ligand are well-resolved in protomers A and B, respectively.
The crystal structure was deposited as PDB ID: 60V7.
Alignment of protomers A and B of 60V7 by CALP main-
chain atoms using PyMOL’” results in good overlap, with 281
of the 348 total backbone atoms aligning with an RMSD of
0.32 A. Notable differences can be seen between the two
protomer structures at two sites: helix al and adjacent to the
carboxylate-binding loop (CBL). Significant distortion of the

protomer B al helix results from an interprotomer disulfide
bond between CALP residues 319 (protomer A) and 319
(protomer B) (Figure S1A,B). We hypothesize that this
disulfide bond and resulting helix al distortion are artifacts of
crystallization. Pronounced conformational differences adja-
cent to the protomer A and B CBLs, which connect the j-
strands 1 and /52, are evident between CALP residues 284
and 289 (Figure S1B) However, these differences occur
upstream of the CBL sequence motif residues 291 (®,) and
293 (®,) and do not appear to affect peptide binding. Due to
the distortion of protomer B helix a1, the following analysis
focuses on the protomer A CALP:kCALOI structure.

3.1.1. Gross Structural Analysis of CALP:kCALO1 Reveals
Canonical PDZ:Peptide Binding. The overall topology of the
protomer A CALP fold, composed of 5 fB-strands and 2 a-
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Figure 6. Schematic diagram of design process reported in ref 35 and
structural comparisons presented in this work. A flowchart of design
work performed in ref 35 is shown with black arrows. First, a design
input model was generated by performing MD refinement of an NMR
structure of CALP:CFTR.** Using osprEy, this input model was used
for the K* algorithm’s®® ensemble-based design of peptide inhibitors
of CALP, resulting in a design output model (ensemble) of
CALP:kCALO1.*® Finally, in this work we perform detailed structural
comparisons between several CALP:peptide structures and models,
indicated by red arrows.

helices, matches well with previous CALP structures and
represents a canonical PDZ fold.”* Class 1 PDZ domains bind
to peptides containing a C-terminal S/T-X-® binding motif,
where @ is hydrophobic and X is any residue, and form an
antiparallel B-sheet with the 2 strand.”® kCALO1 binds in a

manner consistent with typical class 1 PDZ domains,
occupying the groove defined by helix a2 and strand 2
(Figure 1). Four main-chain hydrogen bonds are formed
between CALP f2 and the 3 C-terminal kCALO1 residues
P2-P° forming an antiparallel f-strand interaction (Figure
1B). This positions the most C-terminal peptide residue (P°)
such that the main-chain carboxyl terminus interacts with the
CBL, defined by an X®,G®, sequence motif, where ®,; is a
hydrophobic amino acid.”*® Additionally, the hydrophobic P°
side chain is buried in the pocket defined by CALP residues
Leu291, 11e293, 11e295, Val345, and Leu348 (Figure 1C). The
CALP:kCALO1 structure also contains the critical hydrogen
bond between Thr P> and His341, which plays a significant
role in defining PDZ domain class 1 specificity”® (Figure 1C).
Notably, only the six C-terminal residues of the extended
kCALO1 peptide form any direct contacts with CALP; the four
additional N-terminal residues make only lattice contacts and
were added to facilitate crystallization. Overall, this structure
depicts a binding interaction that is consistent with the
structural characteristics observed for canonical class 1 PDZ
domains.>**

To evaluate the basis for the enhanced efficiency of the
CALP:kCALO1 binding interaction, we compared this crystal
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Figure 7. Structural analysis of the kCALO1 design models®® reveals similarities to the CALP:kCALO1 crystal structure. The design output model
ensemble®® of CALP (gray) bound to kCALO1 (orange) closely resembles the bound CALP:kCALO1 crystal structure (Figure 1). (A) Comparison
of the design input model (gray) and 60V7 crystal structure (green) CALP conformations shows significant shifts (red arrows) in strand 2 and
the 2—f33 loop. These shifts greatly expand the binding cleft between helix a2 and strand f2. The shift in f2—#3 loop conformation is a result of
MD refinement, as it is not present in the structure of 2LOB before refinement (see Figure S2). The 100 conformations in the design output model
ensemble capture interactions between (B) Arg P~! and His311, as well as (C) the interaction between Thr P~ and His341. (D) The design
output ensemble models conformational heterogeneity at P’, suggesting that modeling of entropy at this site was important for this design’s success.
The t, p, or m rotamers of P° are shown in red, orange, and yellow, respectively.
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structure (PDB ID: 60V7, protomer A) to the structure of
CALP:iCAL36 (PDB ID: 4E34, protomers A and B), a
previously developed inhibitor of CALP that also exhibits in-
cell activity,” but binds less tightly to CALP. We note that
CALP residue numbering differs between these two structures,
with numbering for 4E34 +8 relative to 60V7. Unless
otherwise noted, all residue numbering refers to the 60V7
numbering convention.

3.1.2. Comparison of CALP:kCALO1 to CALP:iCAL36
Reveals Differences in Carboxylate-Binding Loop Confor-
mation. First, we analyzed the CBL conformation and peptide
orientation, because previous work”® demonstrated that these
features play a role in modulating CALP specificity for peptide
residue P°. In particular, through analysis of 4E34, ref 26
presented two structural mechanisms by which CALP
accommodates a Ile P° side chain: (1) a CBL conformation
that narrows the entrance to the hydrophobic binding pocket
concomitant with an N-terminal peptide shift (4E34, protomer
A), and (2) a CBL conformation that widens the entrance to
the hydrophobic binding pocket concomitant with a change in
rotamer at Leu @), thus expanding the hydrophobic binding
pocket (4E34, protomer B). kCALOI, in contrast, has a valine
at position P°. To investigate the structural consequences of
this substitution, we aligned each protomer of CALP:iCAL36
to CALP:kCALOl1 by the main-chain atoms of CALP
secondary-structure elements 2 and @2, which flank the
peptide-binding groove. Structures of CALP:kCALO1 proto-
mer A and CALP:iCAL36 protomer A showed good
correspondence at the binding pocket, with an RMSD of
0.24 A, and CALP:kCALO1 protomer A and CALP:iCAL36
protomer B aligned with an RMSD of 041 A (RMSD
calculated using backbone heavy atoms of secondary-structure
elements a2 and f52).

The overall binding geometry of the CBL and peptide for
CALP:kCALOI contains distinct features of both CALP:-
iCAL36 protomers A and B (Figure 2). The CBL
conformation of kCALO1 at residue @, is more similar to
that of the iCAL36 protomer A than protomer B, with C,
deviations of 0.5 and 1.3 A, respectively (see Figure 2A).
Additionally, the rotamer at loop residue @, matches with
iCAL36 protomer A (Figure 2B). Overall, the CALP CBL
when bound to kCALO1 adopts a conformation that narrows
the entrance of the hydrophobic binding pocket, which is
similar to the previously reported CALP:iCAL36 protomer A
structure (Figure 2B). This suggests that kCALO1 binding to
CALP does not require hydrophobic pocket expansion to
accommodate the Val P°.

However, the bound kCALO1 peptide shifts toward the
CBL, similar to the CALP:iCAL36 protomer B structure
(Figure 2C). kCALOL shifts toward the CBL relative to
iCAL36 protomer A by 0.7 A measured at the P° C, (Figure
2B). This results in side-chain positioning at kCALO1 Val P°
that is intermediate to CALP:iCAL36 protomers A and B. This
shift propagates up the backbone of the peptide, as the P™! C,
also shifts by 0.8 A. These results suggest that the presence of a
valine at P°, rather than a sterically larger leucine or isoleucine,
allows shifts in the peptide backbone that accommodate the
less common C-terminal side chain within a high-affinity
interaction.

On the basis of this structural analysis, it is unclear how the
changes in P° binding mode between CALP:kCALO! and
CALP:iCAL36 affect binding affinity. On one hand, the Val P°
present in kCALO1 appears to allow a peptide C-terminal shift

without requiring a shift in the CBL and hydrophobic pocket
expansion. On the other hand, it is not clear whether this C-
terminal peptide shift is either favorable or unfavorable for
binding. Indeed, the interactions formed by Val and Ile P° in
60V7 and 4E34, respectively, appear qualitatively similar, and
the inclusion of the sterically larger Ile could more effectively
fill the pocket. Overall, more analysis is needed to clarify the
effects of structural variation at this site. This analysis is
provided in Section 3.2.1, where investigation of
CALP:kCALO1 and CALP:iCAL36 energy landscapes suggests
that these structural shifts allow the kCALO1 Val P° to sample
three favorable rotamers, which we predict to be favorable for
binding.

3.1.3. Comparison of CALP:kCALO1 and CALP:iCAL36 at
Modulator Residues Reveals Interactions That Favor
kCALO1 Binding. Previous work”>*”°* pinpointed “modulator”
residues at P™!, P73, and P™*—P~® that show individually
modest effects on binding and specificity but together can
create significant effects. We compared the CALP:kCALO1 and
CALP:iCAL36 protomer A structures in order to determine
the effect of these modulator residues on inhibitor binding.

kCALO1 contains an arginine residue at P! that interacts
with His311 in an apparent 7—cation interaction (Figure 1D).
In contrast, iCAL36 contains an isoleucine at this position,
which forms minor van der Waals interactions with His311 and
Ser294. These interactions appear to be much less extensive
than those formed by the Arg P™" (see Figure S3A). Favorable
interactions between CALP and kCALO1 are indicated at Gln
P~* which hydrogen bonds with Glu300 or His301, in
addition to forming van der Waals interactions with His341
and interacting with several waters (Figure 1A). While the Pro
P~* found in the CALP:iCAL36 structure does interact with
His301, His341, and a single water molecule, these interactions
appear to be less favorable (see Figure S3B).

kCALO1 and iCAL36 differ only slightly at P~ containing a
valine and threonine residue, respectively. Both residues form
van der Waals interactions between a methyl group and
Ser308, but only the kCALO1 Val P~* forms interactions with
Thr296 due to the larger steric volume of the methyl group.
These differences, while minor, suggest slightly more favorable
interactions for kCALO1 at this position (see Figure S3C).

Overall, the most notable structural differences in binding
stereochemistry between kCALO1 and iCAL36 occur at
residues P~' and P7*, where mutations to long polar and
charged residues likely result in an increase in favorable
energetic interactions. These results suggest that sequence
differences shift the thermodynamic balance: the more
hydrophobic iCAL36 peptide may have higher energy alone
in solvent, whereas the more polar kCALOl sequence is
preferentially stabilized in the bound state.

3.2, Energy Landscape Analysis of CALP:kCALO1.
Conformational entropy can play a significant role in defining
protein structure and function.””™®" For this reason, when
modeling binding of protein:ligand complexes, it is useful to
compute partition functions over protein ensembles to better
model and understand binding thermodynamics.******~*® To
approximate the conformational ensembles involved in
CALP:kCALO1 and CALP:iCAL36 binding, we computed
partition functions and energy landscapes using osprey for
bound and unbound models of CALP:kCALO1 (PDB ID:
60V7, protomer A) and CALP:iCAL36 (PDB ID: 4E34,
protomer A) as described in Section 2.2. We compared energy
landscape features of CALP:kCALO1 and CALP:iCAL36 to
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reveal dynamic features that contribute to CALP:kCALO1
binding. Furthermore, we used these energy landscapes to
compute approximations to thermodynamic components of
binding (described in Section 2.3) to analyze differences in
binding of CALP:kCALO1 and CALP:iCAL36. A discussion on
how to interpret energy landscape diagrams presented herein
can be found in Section 2.4.

3.2.1. Energy Landscape Comparison of CALP:kCALO1
and CALP:iCAL36 Foregrounds Structural and Dynamic
Features That Explain Differences in Binding. Detailed
comparison of CALP:kCALO1 (Figure 4) and CALP:iCAL36
(Figure 5) landscapes reveals local differences in side-chain
conformational distributions for each structure. This is most
notable when comparing the bound inhibitor landscapes of
kCALO1 and iCAL36 (Figures 4C and SC, respectively). Note
that for ease of comparison we have decomposed the bound
complex CALP:kCALO1 landscape into bound CALP and
kCALO1 landscapes. The original convolved landscapes can be
found in Figure S$4.

The bound kCALO1 landscape (Figure 4C) indicates that
residue Val P° adopts three significant rotamers, shown by
subdivision into three arcs at the outermost ring (ring S). In
contrast, the bound iCAL36 landscape (Figure SC) indicates
that residue Ile P° adopts only one significant rotamer, shown
in the second ring from the center (ring 1). Structural analysis
of the rotamer distribution for this residue (Figure 3) suggests
that Val P° forms favorable interactions with the CALP
hydrophobic pocket in each of three rotamers (Figure 3A—C)
defined by a rotation of ~60° around the N-C,—Cs—C,
dihedral angle. As a result, the landscape analysis of bound
kCALO1 suggests that residue Val P interacts with low energy
and locally high entropy. Conversely, the iCAL36 Ile P° is
likely too large to interact favorably in multiple rotameric states
and is predicted to occupy only one significant rotamer. These
predicted differences in conformational heterogeneity at P°
could help explain the improved binding efliciency of kCALO1.
Ensemble features are difficult to visualize when examining
only a static crystal structure, but are now made clear by the
energy landscape analysis.

Comparison of the energy landscapes of bound CALP for
the CALP:kCALO1 and CALP:iCAL36 models (Figures 4A
and 5A) also reveals differences in conformational hetero-
geneity. CALP bound to kCALOl appears to be heavily
conformationally restricted, with the GMEC occupying nearly
50% of the landscape (Figure 4A), while CALP bound to
iCAL36 is less conformationally restricted, with the GMEC
occupying roughly 20% of the landscape (Figure SA). These
differences appear to be driven in large part by differences in
residue conformational heterogeneity at His311 and His301
(CALP:kCALO!1 residue numbering, CALP:iCAL36 number-
ing is +8 relative), which can be seen by comparing the
innermost two rings (ring 0 and 1) in the two bound CALP
landscapes (Figures 4A and SA). For each of ring 0 (the
innermost) or 1 (the second innermost), the bound CALP
landscape in the iCAL36 structure shows an additional minor
rotamer population, shown by a purple or blue arc,
respectively. This indicates that the rotamer distribution for
His311 and His301 in the bound CALP:iCAL36 model has
more entropy than that in the CALP:kCALO1 model.

The greater calculated side-chain entropy for His301 and
His311 in the iCAL36-bound state might appear counter-
intuitive, given the better affinity of the kCALO1 complex.
However, these entropic contributions may be offset by other

changes in the protein and by a loss of favorable energetic
interactions locally. Indeed, examination of structural inter-
actions between His311 and His301 and the peptide inhibitor
for CALP:kCALO1 and CALP:iCAL36 structures suggests that
this relative increase in entropy for CALP:iCAL36 can be
explained by a loss of interactions between His311 and peptide
P7', and between His301 and peptide P~* Specifically,
kCALO1 Arg P! forms strong z-stacking interactions with
His311, while iCAL36 Ile P~! forms weaker interactions with
the analogous His319. Similarly, kCALO1 Gln P™* forms a
hydrogen bond with His301, while iCAL36 Pro P™* forms van
der Waals interactions. As a result, we expect these histidines
to form more energetically favorable interactions with kCALO1
than iCAL36. Our models predict that these favorable
interactions are sensitive to the rotamer choice at His311
and His301, resulting in a less conformationally heterogeneous
ensemble at these positions.

Thus, energy landscape analysis both reveals conformational
heterogeneity at Val P° and draws attention to important
modulator residue interactions in the bound state. These
ensemble features are not clearly evident from electron density
or B-factor analysis, indicating that our models capture
information that is missed by traditional structural analysis.
This information could likely be captured by measuring 3-bond
scalar couplings by NMR,* analysis of a higher-resolution
structure with Ringer®® or qFit,”*™* or use of advanced
crystallography techniques including room-temperature®®”
and multitemperature® crystallography.

3.2.2. Thermodynamics of CALP:kCALO1 and CALP:iCAL36
Energy Landscapes Reveal Decreases in Internal Energy and
Entropy upon Binding. Energy landscapes of CALP:kCALO1
binding visualize the loss of entropy upon binding. Figure 4
depicts energy landscapes of the unbound CALP (Figure 4B),
unbound kCALO1 (Figure 4D), and bound CALP and
kCALO1 (Figure 4A,C, respectively). Comparison of the
unbound and bound ensemble landscapes for CALP (Figure
4A,B) reveals the significant loss of entropy due to conforma-
tional rearrangement upon binding. The unbound CALP
landscape (Figure 4B) shows many low-energy conformations
that contribute to the partition function, indicated by the many
green-blue arcs in the outermost ring. Conversely, the bound
ensemble of CALP (Figure 4A) is dominated by a single low-
energy conformation, indicated by the large green arc, with the
rest of the landscape occupied by higher-energy minor
conformations. This indicates that the conformational
rearrangement due to binding of kCALO1 imposes a significant
entropic cost that must be compensated for by the gain of
favorable intermolecular interactions.

Comparison of the unbound and bound ensemble land-
scapes for kCALOl (Figure 4C,D, respectively) reveals a
similar picture, with the decrease in entropy upon binding
illustrated by the decrease in number and increase in size of the
arcs in the outermost ring. Notably, for the unbound kCALO1
landscape, the GMEC occupies less than 0.2% of the partition
function and outer rings are characterized by extensive white-
space, indicating the presence of many conformations that
occupy individually less than 0.1% of the partition function.
Together, these features are indicative of a high-entropy
landscape. In contrast, the bound kCALOl landscape is
characterized by fewer conformations that contribute relatively
more to the partition function, and a GMEC that occupies
roughly 5% of the partition function. These landscape
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representations depict the loss of entropy upon binding of
CALP:kCALO1.

Using these energy landscapes, we calculated approximations
to the ensemble-weighted internal energy and entropy for the
bound and unbound states of CALP:kCALO1 as described in
Section 2.3. Additionally, we computed the same approx-
imations for the binding-competent ensemble®’—an alchem-
ical state defined by the conformations and occupancies found
in the bound protein or ligand modeled with the energy field of
the unbound state—to deconvolve the changes in entropy vs
internal energy upon binding. Conveniently, as shown
previously®” this construction allows us to decompose binding
into an “induced fit” step, involving a change in conformation
distribution, and a “lock and key” step, in which protein:ligand
interactions are formed, without regard to actual mechanism.
At the chosen temperature of ~298 K, both CALP and
kCALO1 exhibit a change in conformation distribution upon
binding. This change in distribution results in a change in
internal energy and entropy for CALP of 0.113 and —1.97
kcal/mol, respectively, and for kCALO1 of 0.234 and —2.23
kcal/mol, respectively, quantifying the large decrease in
entropy due to binding, where the total contribution of the
entropy change to the Helmholtz free energy —TASy;,4in, is
+4.19 kcal/mol. Complex formation—the “lock and key”
step—results in a decrease in internal energy: whereas the
combined internal energy of the unbound models is —18.84
kcal/mol, the bound model internal energy is —28.49 kcal/
mol, resulting in a AUy;pging of —9.6S keal/mol. As a result, the
approximated change in Helmholtz free energy due to binding
AFyinging is —5.46 kcal/mol. These models suggest that both
binding partners incur penalties to entropy and internal energy
when adopting the binding-competent ensemble, which are
compensated for by a large decrease in internal energy upon
complex formation.

Energy landscapes of CALP:iCAL36 binding reveal a loss of
entropy upon binding that is similar to that of CALP:kCALO1.
Figure 5 depicts energy landscapes of the unbound CALP
(Figure SB), unbound iCAL36 (Figure SD), and bound CALP
and iCAL36 (Figure SA,C, respectively). Comparison of
bound and unbound states for CALP and iCAL36 also reveal
a decrease in entropy upon binding for both binding partners,
indicated by CALP and iCAL36 energy landscapes exhibiting a
reduction in the number of arcs and an increase in arc size
upon binding,

Approximations of ensemble-weighted internal energy and
entropy for bound, binding-competent ensemble, and unbound
models of CALP:iCAL36 revealed a smaller decrease in
entropy upon binding compared to CALP:kCALO1, but also
showed a smaller decrease in internal energy upon binding. At
a temperature of ~298 K, our models indicate that both CALP
and iCAL36 undergo a change in conformation distribution
upon binding. This results in a change in internal energy and
entropy for CALP of 0.004 and —1.60 kcal/mol, respectively,
and for iCAL36 of 0.558 and —1.89 kcal/mol, respectively,
illustrating a decrease in entropy due to binding, where the
total contribution of the entropy change to the Helmholtz free
energy —TASygng 18 +3.48 kecal/mol. Complex formation
results in a decrease in internal energy: whereas the combined
internal energy of the unbound models is —17.7 kcal/mol, the
bound model internal energy is —25.6 kcal/mol, resulting in a
AUpipging of —7.84 kcal/mol. As a result, the approximated
change in Helmholtz free energy due to binding AFy;,gn, is
—4.36 kcal/mol. Similar to CALP:kCALO1, both binding

partners undergo a loss of entropy and reduction in internal
energy upon binding.

Overall, these landscapes and thermodynamic calculations
suggest that although both CALP:kCALO1 and CALP:iCAL36
undergo a decrease in both entropy and internal energy upon
binding, the energetic interactions gained upon binding are less
favorable for CALP:iCAL36 than for CALP:kCALO1. This is
reflected in the change in internal energy due to binding for
each model, with CALP:kCALO1 and CALP:iCAL36 exhibit-
ing AUpinding of —9.65 kcal/mol and AUynging of —7.84 keal/
mol, respectively. Although the entropic penalty due to binding
is less for CALP:iCAL36, these models predict that kCALO1
binds more tightly to CALP than does iCAL36, with AFy;yding
values of —5.46 kcal/mol and —4.36 kcal/mol, respectively.
Despite the fact that our models account for only a subset of
biologically relevant flexibility (see Section 2.3), this predicted
1.1 kecal/mol difference in free energy of binding is semi-
quantitatively in line with experimentally determined inhibition
constants”>*%* (see Table S1), suggesting that these models
are capturing biologically relevant features.

These results suggest that side-chain conformational entropy
played a role in the design for improved binding efficiency of
kCALO1, an observation that supports related work by Head-
Gordon and co-workers.*" Previous studies™® suggested that
backbone flexibility may play a role in CALP:peptide binding,
but backbone conformational entropy was not addressed in
this study. Investigation into the effects of backbone flexibility
on predicted energy landscapes and binding thermodynamics
for both kCALO1 and CALP is a promising avenue for future
work. In particular, future directions include modeling
backbone flexibility with the CATS*” and DEEPER”
algorithms in OsPrEY, focusing on the CALP a2 helix, f1-52
loop, and 2—f33 loop. Investigation of the backbone flexibility
of iCAL36 and kCALOl1 would also be valuable, especially
given that iCAL36 contains a Pro P~* whereas kCALO1
contains a Gln P™*.

3.3. Design Model Corresponds Closely with Bound
Crystal Structure. In this section, we briefly compare the
design model reported in ref 35 with 60V7 to determine
which key structural features contributed to a successful
kCALO1 design. We perform structural comparisons for both
the CALP:kCALO1 design output model (defined as the
ensemble of structures output from the K* algorithm™ in
ospreY) and the CALP:CFTR design input model (defined as
the structural input to osPREY). A schematic diagram depicting
these definitions is shown in Figure 6. We begin by comparing
gross features, and then we proceed to identify shared side-
chain energetic and dynamic interactions.

To determine the accuracy of the structural design model
reported in ref 35, we compared the crystal structure of
CALP:kCALO1 to the ensemble of 100 low-energy structures
that comprise the CALP:kCALO1 design output model®
(Figure 7). We aligned members of the design output
ensemble to the CALP:kCALO1 crystal structure using the
main chain of secondary-structure elements @2 and f2 and
obtained good alignment quality, with one representative
structure aligning with an RMSD of 0.94 A. Deviations were
primarily a result of a more relaxed hydrophobic binding
pocket in the design model relative to the CALP:kCALO1
crystal structure 60V7, involving an outward shift of the 2
strand (Figure 7A). Additionally the loop connecting 2 and
B3 adopts a different conformation, resulting in a large loop
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shift and a significant change in orientation of the 2 strand
(Figure 7A).

We hypothesized that these differences were inherited from
the CALP:CFTR design input model, generated during MD
refinement””* of the bound NMR structure of CALP:CFTR
(PDB ID: 2LOB).** This MD-refined structure was chosen as
the design input’ due to the optimization of the f-strand
interactions between the CFTR peptide and strand $2.** In
order to test this hypothesis, we aligned both 2LOB NMR
model 1 and the design input model to 60V7 by the main-
chain atoms of secondary-structure elements a2 and 2 which
revealed good alignment quality, with an RMSD of 0.69 and
0.94 A, respectively. Overall, 2LOB is more relaxed than the
bound CALP:kCALO1 structure, with slight outward shifts and
changes in angle in both helix a2 and strand 2 that result in
an apparent expansion of the hydrophobic pocket that interacts
with peptide residue P° (Figure S2). However, the loop
connecting 2 and 3 shows good correspondence between
the CALP:CFTR NMR structure and the CALP:kCALO1
crystal structure (Figure S2). The change in loop conformation
and significant reorientation of strand f2 is a result of MD
refinement and does not appear in either the unrefined NMR
structure (2LOB), the CALP:kCALOl crystal structure
(60V7), or indeed in the CALP:iCAL36 structure (4E34).
Therefore, we conclude that deviations in CALP conformation
observed in the design output model of ref 35 were inherited
from MD refinement of a relaxed NMR structure.

Nonetheless, this NMR-based design model captured key
structural and ensemble properties of the CALP:kCALO1
complex,91 which allowed osprey to design kCALO1, the most
binding-efficient inhibitor of CALP to date. Almost all
members of the design ensemble predict favorable interactions
between Arg P~ and His311 (Figure 7B). Additionally, all
three rotamers of Val P’ (t, p, and m) appear in the design
output ensemble, indicating that the K* algorithm successfully
identified sequences with multiple low-energy states (Figure
7D). A significant subset of the design ensemble captures the
important hydrogen bond between His341 and Thr P72
indicating that the design of kCALOl captured key
components of the class 1 PDZ binding geometry”® (Figure
7C). Interestingly, some members of the design output
ensemble do not contain the hydrogen bond between histidine
341 and threonine P7% consistent with observations of
hydrogen bond breaking and reformation from experimental’”
and MD simulation”™ ”° studies. Indeed, solution NMR
studies of ubiquitin showed that threonine residues occupy
multiple rotameric states by measuring 3-bond scalar
couplings.”” Overall, the crystal structure and design ensemble
are quite quantitatively and qualitatively similar, despite
differences in CALP structure, indicating that the design
presented in ref 35 succeeded in capturing important structural
and ensemble interactions. We conclude that these features
allowed ospreY to design kCALO1, the most binding-efficient
inhibitor of CALP to date with rescue activity for F508del-
CFTR, a disease-associated variant present in approximately
90% of CF patients. Key interactions and entropic effects
predicted by the osprey design model are supported by the
new crystal structure and landscape analysis presented herein.

3.4. PDZ Domain Energy Landscapes. Modeling of
energy landscapes complements traditional structural analysis
of CALP:peptide crystal structures and provides a novel way to
probe the conformational distribution available to the protein
complex. We submit that these tools may prove useful for

analyzing PDZ:peptide complexes in general. To investigate
differences in conformational distributions for PDZ domains,
we computed partition functions and energy landscapes for 10
structures of bound PDZ:peptide complexes. A preliminary
analysis of these landscapes reveals a general trend of loss of
entropy upon binding for both PDZ and peptide ligands,
similar to that observed for CALP:kCALO1 and CALP:iCAL36
. Additionally, these supplementary energy landscapes predict
no significant conformational heterogeneity for any studied
system at the peptide position P in the bound state,
contrasting with the heterogeneity we observed for
CALP:kCALO1 at Val P°. This raises the intriguing possibility
that, similarly to kCALO1 for CALP, more binding-eflicient
inhibitors for other PDZ domains could be designed by
maximizing relative entropy at P°. We include these energy
landscapes for the scientific communtiy in SI Section S1.3 in
the hope that these insights and data may be of further benefit.

4. CONCLUSION

In this work we investigated the basis for the binding efficiency
of kCALO1, an osprey-designed peptide inhibitor of CALP that
rescued functional CFTR activity as assessed by in vitro Ussing
chamber assays.” On the basis of structure and energy
landscape analysis of the new crystal structure of
CALP:kCALOI, we conclude that the comparative binding
efficiency of kCALO1 stems from entropic effects at P° and
substitutions that result in more favorable energetic
interactions at modulator residues. This conclusion is
supported not only by comparative analysis of the
CALP:kCALO1 and CALP:CAL36 crystal structure confor-
mations, but also by investigating energy landscapes for each
ensemble model. We used energy landscape analysis enabled
by the MARK* algorithm® in osPReY to provably approximate
the energies of all conformations in each ensemble model,
generated by assigning flexibility to residues in each crystal
structure. These landscapes probed local residue conforma-
tional heterogeneity and enabled us to approximate binding
thermodynamics to correctly predict that kCALO1 binds more
tightly to CALP than does iCAL36. We conclude that
modeling of energy landscapes complemented traditional
structural analysis of CALP:peptide crystal structures and
provided a novel way to probe the conformational distribution
available to the protein complex. Modeling energy landscapes
may prove useful for analyzing PDZ:peptide complexes in
general, and hence, we provide energy landscapes for 10
additional bound PDZ:peptide comglexes. Finally, we show
that our successful design of kCALO1>® was a result of effective
modeling of both energetic and ensemble properties of
CALP:peptide binding.
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