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SUMMARY
Resistance to pharmacological treatments is a major public health challenge. Here, we introduce RESISTOR—a
structure- and sequence-based algorithm that prospectively predicts resistance mutations for drug design.
RESISTOR computes the Pareto frontier of four resistance-causing criteria: the change in binding affinity (DKa)
of the (1) drug and (2) endogenous ligand upon a protein’s mutation; (3) the probability a mutation will occur
based on empirically derivedmutational signatures; and (4) the cardinality ofmutations comprising a hotspot.
For validation, we applied RESISTOR to EGFR and BRAF kinase inhibitors treating lung adenocarcinoma and
melanoma. RESISTOR correctly identified eight clinically significant EGFR resistance mutations, including
the erlotinib and gefitinib ‘‘gatekeeper’’ T790M mutation and five known osimertinib resistance mutations.
Furthermore, RESISTOR predictions are consistent with BRAF inhibitor sensitivity data from both retrospective
and prospective experiments using KinCon biosensors. RESISTOR is available in the open-source protein
design software OSPREY.
INTRODUCTION

Acquired resistance to therapeutics is a pressing public health

challenge that affectsmaladies from bacterial and viral infections

to cancer (Centers for Disease Control and Prevention, 2020;

Housman et al., 2014; Zahreddine and Borden, 2013; Assaraf

et al., 2019; Gupta et al., 2012; Vasan et al., 2019). There are

several different ways cancer cells acquire resistance to treat-

ments, including drug inactivation, drug efflux, DNA damage

repair, cell death inhibition, and escapemutations, among others

(Housman et al., 2014). The accurate, prospective prediction of

resistance mutations could allow for the design of drugs that

are less susceptible to resistance (see Box 1). Although it is un-

likely that medicinal chemists will be able to address all of the

resistance-conferring mechanisms in cancer cells, progress

can be made by the incorporation of increasingly accurate

models of the above contributing factors to acquired resistance,

leading to the development ofmore durable therapeutics. To that

end, several structure-based computational techniques for ther-

apeutic design and resistance prediction have been proposed.

One such technique is based on the substrate-envelope hy-

pothesis. In short, the substrate-envelope hypothesis states
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that drugs designed to have the same interactions as the endog-

enous substrate in the active site will be unlikely to lose efficacy

because any mutation that ablates binding to the drug would

also ablate binding to the endogenous substrate (Altman et al.,

2008). C. Schiffer and B. Tidor’s labs developed the substrate-

envelope hypothesis for targeting drug-resistant HIV strains

(Prabu-Jeyabalan et al., 2002; King et al., 2004; Altman et al.,

2008; Shen et al., 2013). Their design technique has been suc-

cessfully applied to develop compounds with reduced suscepti-

bility to drug-resistant HIV proteases (Shen et al., 2013).

Another computational technique is to use an ensemble-

based positive and negative designs (Frey et al., 2010; Gainza

et al., 2016). There are two specific ways that point mutations

can confer resistance to therapeutics: they can decrease binding

affinity to the therapeutic or they can increase binding to the

endogenous ligand (Frey et al., 2010; Reeve et al., 2015). Protein

design with the goal of decreasing binding is known as negative

design and increasing binding is known as positive design. As a

concrete example, consider the case of a drug that inhibits the

tyrosine kinase activity of the epidermal growth factor receptor

(EGFR) to treat lung adenocarcinoma. Here, an active site muta-

tion could sterically prevent the inhibitor from entering the active
er Inc.
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Box 1. Progress and potential

Targeted cancer drugs developed over the past two decades have been instrumental in treating certain types of cancer and ex-

tending patient lifespans. These drugs include kinase inhibitors targeting EGFR and BRAF, two important enzymes of themitogen-

activated protein kinase pathway whose dysregulation can lead to many types of cancer, including melanoma and non-small cell

lung cancer. The inhibitors are effective for a period of time but the tumors often develop resistance to the drugs, leading once

again to cancer progression. The ability to predict how an enzyme target can develop drug resistance would allow for a proactive,

resistance-aware approach to drug design. Here, we introduce RESISTOR, an algorithm that uses structure-based computational

design to predict how different mutations in an enzyme will affect a drug’s efficacy. It pairs these predictions with empirical

data on how likely a mutation is to occur in a given cancer type, which allows researchers to identify mutational hotspots, or partic-

ular places wheremutations aremost likely to cause drug resistance. These predictions provide designers with new insights during

the drug development process that should allow for the quicker development of more durable and longer-lasting cancer

therapeutics.
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site (Yan et al., 2017). On the other hand, a different mutation

might have no effect on an enzyme’s interactions with the drug

but instead increase affinity to its native ligands, resulting in

the increased phosphorylization of downstream substrates

(Yun et al., 2008; Yoshikawa et al., 2013). Because these two

distinct pathways to therapeutic resistance exist, it is necessary

to predict resistance mutations using both positive and negative

design. In other words, predicting resistance can be reduced to

predicting a ratio of the change in Ka upon mutation of the pro-

tein:endogenous ligand and protein:drug complexes.

Ka is an equilibrium constant measuring the binding and un-

binding of a ligand to a receptor. It is defined as:

Ka =
kon
koff

=
½RL�
½R�½L� ; (Equation 1)

where kon and koff are the on- and off-rate constants, and ½RL�,
½R�, and ½L� the equilibrium concentrations of, respectively, the

receptor-ligand complex, unbound receptor, and unbound

ligand. Ka is the reciprocal of the disassociation constant Kd.

K� is an algorithm implemented in the OSPREY computational

protein design software that provably approximates Ka (Geor-

giev et al., 2008; Hallen et al., 2018). It is defined as the quotient

of the bound (complex) to unbound (apo protein and apo ligand)

partition functions of a protein:ligand system. See the STAR

Methods for further details on the K� algorithm.

Our lab developed a provable, ensemble-based method using

positive and negative K� design to computationally predict and

experimentally validate resistance mutations in protein targets

(Frey et al., 2010). We then applied this methodology to prospec-

tively predict resistance mutations in dihydrofolate reductase

when Staphylococcus aureus was treated with a novel antifolate

(Reeve et al., 2015), which we later confirmed in vivo (Reeve

et al., 2015, 2016), demonstrating the utility of correctly predict-

ing escape mutations during the drug discovery process.

From these previous works, it is clear that multiple criteria

must be combined to decide whether a mutation confers resis-

tance. Often it is the human designers themselves who must

choose arbitrary weights for different criteria. Yet, multi-objec-

tive, or Pareto, optimization techniques would allow designers

to combine multiple criteria without choosing arbitrary decision

thresholds. Pareto optimization for protein design has been em-

ployed by Chris Bailey-Kellogg, Karl Griswold, and co-workers

(Parker et al., 2013; Choi et al., 2013, 2016; Salvat et al., 2015;

Griswold and Bailey-Kellogg, 2016, Salvat et al., 2017). One
such example is PEPFR (protein engineering Pareto frontier),

which enumerates the entire Pareto frontier for a set of different

criteria such as stability versus diversity, affinity versus speci-

ficity, and activity versus immunogenicity (He et al., 2012). Algo-

rithmically, PEPFR combined divide-and-conquer with dynamic

or integer programming to achieve an algorithm where the num-

ber of divide-and-conquer ‘‘divide’’ steps required for the search

over design space is linear only in the number of Pareto optimal

designs. Being dependent on multiple criteria, a multi-objective

optimization method that ranks solutions, such as Pareto optimi-

zation, is particularly suitable for resistance predictions.

Instead of merely finding a single solution optimizing a linear

combination of functions, Pareto optimization finds all consistent

solutions optimizingmultiple objectives such that no solution can

be improved for one objective without making another objective

worse. Specifically, let L be the set of possible solutions to the

multi-objective optimization problem, and let l˛L. Let F be a

set of objective functions and f ˛F , where f : L/R is one objec-

tive function. A particular solution l is said to dominate another

solution l0 when

fðlÞ % fðl0Þ for all f ˛F ; and (Equation 2)

gðlÞ < gðl0Þ for at least one g˛F : (Equation 3)

A solution l is Pareto optimal if it is not dominated. RESISTOR

combines ensemble-based positive and negative design, can-

cer-specific mutational signature probabilities, and hotspots to

identify not only the Pareto frontier but also the Pareto ranks of

all candidate sequences.

The inclusion of mutational signature probabilities in Pareto

optimization is possible because distinct mutational processes

are operating in different types of cancers (Alexandrov et al.,

2013, 2020). Specifically, these mutational processes drive the

type and frequency of DNA base substitutions. Alexandrov

et al. (2013) postulated each signature to be associated with a

biological process (such as APOBEC activity) or a causative

agent (such as tobacco use), although not all associations are

definitively known. What is certain is that particular signatures

tend to appear in particular types of cancer. For example, 12 sin-

gle-base substitution signatures, 2 double-base substitution sig-

natures, and 7 indel signatures were found in a large set of mel-

anoma samples, with many of those signatures associated with

ultraviolet light exposure (Alexandrov et al., 2020). Building on

the work of Alexandrov et al. (2013), Kaserer and Blagg (2018)
Cell Systems 13, 830–843, October 19, 2022 831
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combined the multiple signatures found in each cancer type to

generate overall single-base substitution probabilities. RESISTOR

uses these probabilities to compute the overall probability that

mutation events will occur in a gene independent of changes

to protein fitness. This amino acid mutational probability is one

of the axes we optimize over.

The most computationally complex part of provable,

ensemble-based multistate design entails computing the K�

scores of the different design states. This is largely because for

biological accuracy it is necessary to use K� with continuous

side-chain flexibility (Gainza et al., 2012; Qi et al., 2018). Though

OSPREY has highly optimized GPU routines for continuous flex-

ibility (Hallen et al., 2018), energy minimization over a combina-

torial number of sequences in a continuous space is, in practice,

computationally expensive. Having a method to reduce the

number of sequences evaluated would greatly decrease the

computational cost. COMETS is an empirically sublinear algorithm

that provably returns the optimum of an arbitrary combination of

multiple sequence states (Hallen and Donald, 2016). RESISTOR

uses COMETS to prune sequences whose predicted binding with

the drug improves and binding with the endogenous ligand dete-

riorates. Although COMETS does not compute the full partition

function, it provides a useful method to efficiently prune a combi-

natorial sequence space, for example, when investigating resis-

tant protein targets with more than one resistance mutation. By

virtue of pruning using COMETS, RESISTOR inherits the empirical

sublinearity characteristics of the COMETS sequence search,

rendering RESISTOR sublinear in the size of the sequence space.

The tyrosine kinase EGFR and serine/threonine-protein kinase

BRAF are two oncogenes associated with, respectively, lung

adenocarcinoma and melanoma. Both kinases are conformation-

ally flexible, but two conformations are particularly determinative

to their kinase activity—the ‘‘active’’ and ‘‘inactive’’ conforma-

tions. Oncogenic mutations to EGFR include L858R and deletions

in exon 19, both of which constitutively activate EGFR (Harrison

et al., 2020; Lynch et al., 2004). Likewise, V600E is the most prev-

alent constitutively activating mutation in BRAF (Davies et al.,

2002). Numerous drugs have been developed to treat the EGFR

L858R and BRAF V600Emutations. The first-generation inhibitors

erlotinib and gefitinib competitively inhibit ATP binding in EGFR’s

active site, whereas binding by the third-generation osimertinib is

irreversible (Dowell et al., 2005; Herbst et al., 2004; Soria et al.,

2018). For BRAF, the therapeutics dabrafenib, vemurafenib, and

encorafenib were designed to target the V600E mutation and

are in clinical use, and PLX8394 is in clinical trials (Ballantyne

and Garnock-Jones, 2013; Bollag et al., 2012; Shirley, 2018;

Janku et al., 2020). The use of RESISTOR to predict resistance mu-

tations to these drugs would provide strong validation of the effi-

cacy of this approach.

By presenting RESISTOR, this article makes the following

contributions:

(1) A multi-objective optimization algorithm that combines

four axes of resistance-causing criteria to rank candidate

mutations.

(2) The use of COMETS as a provable and empirically sublinear

pruning algorithm that removes a combinatorial number

of candidate sequences before expensive ensemble eval-

uation.
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(3) A validation of RESISTOR that correctly predicted eight clin-

ically significant resistance mutations in EGFR, providing

explanatory ensemble-bound structural models for ac-

quired resistance.

(4) Prospective predictions with explanatory structural

models and experimental validation of resistance muta-

tions for four drugs targeting BRAF mutations in

melanoma.

(5) Newly modeled structures of EGFR and BRAF bound to

their endogenous ligands and inhibitors in cases where

no experimental structures exist.

(6) An implementation of RESISTOR in our laboratory’s free and

open-source computational protein design software

OSPREY (Hallen et al., 2018).
RESULTS

Overview of RESISTOR

The Pareto optimization in RESISTOR optimizes four axes: struc-

ture-based positive design, structure-based negative design,

sequence-basedmutational probabilities, and the count of resis-

tance-causing mutations at a given amino acid location. Briefly,

we chose these four criteria because they identify mutations that

(1) increase affinity to the endogenous ligand in such away that it

outcompetes the inhibitor, (2) decrease the efficacy of the drug

by reducing its binding (leading to the same effect), (3) are pre-

dicted to occur based on the DNA sequence and excludes those

that are unlikely to arise, and (4) are located at residue positions

where many mutations are predicted to confer resistance, thus

identifying a position of relative importance. We believe these

criteria to be the minimal requirements a cancer clone must fulfill

to confer resistance, and we have had success predicting retro-

spective and prospective resistance mutations in a previous

study using these four criteria (Kaserer and Blagg, 2018).

In our earlier study, we prioritized potential resistance mutants

by first applying four sequence- and structure-based filtering

steps and then pruning the remaining predicted resistancemuta-

tions by (1) choosing the three residue locations with the highest

hotspot cardinality (see section ‘‘Identifying mutational hot-

spots’’) and (2) ranking the individual amino acids within the hot-

spots by their mutational probability (Kaserer and Blagg, 2018).

In other words, we ranked resistance candidates by two criteria:

their hotspot cardinality and mutational probability. With

RESISTOR, hotspot cardinality instead becomes one of the Pareto

objectives. Our earlier work used the positive and negative

design K� scores as a binary resistance filter (Kaserer and Blagg,

2018). Here, we use them first as a filter and then as two addi-

tional Pareto optimization objectives. This allows RESISTOR to

use thermodynamic predictions not only in a binary, qualitative

manner (i.e., whether the ratio of K� positive and negative de-

signs indicates resistance) but also in a quantitative manner

(i.e., the magnitude of the affinity-driven resistance). Finally,

RESISTOR also transforms mutational probability from the final

ranking criteria to one of the four Pareto objectives. In summary,

RESISTOR’s Pareto optimization objective function simultaneously

maximizes the DKa of the positive design (the protein bound to

the endogenous ligand), minimizes the DKa of the negative de-

signs (the protein bound to the drug), maximizes the mutational



Figure 1. An example RESISTOR workflow

with EGFR

RESISTOR finds the Pareto frontier from OSPREY

positive and negative designs, mutational proba-

bilities, and resistance hotspots.

(A) Two structures are required as input to

OSPREY to compute positive and negative design

K� scores. The structure for positive design is

EGFR (green) bound to its endogenous ligand ATP

(blue), for the negative design EGFR is bound to the

drug erlotinib (pink). The goal of positive (resp.

negative) design is to improve (resp. ablate) bind-

ing affinity. A mutation is resistant when its ratio of

positive to negative K� scores increases.

(B) All residues within 5 Å (purple) of the drug are

allowed to mutate to any other amino acid.

(C) COMETS is used as an efficient, sublinear algo-

rithm to quickly prune infeasible mutations. BWM�

is used with a fixed branch width to compute a

polynomial-time approximation to the K� score.
(D) Candidate mutations that pass the COMETS

pruning step have their positive and negative K�

scores computed in OSPREY. We recommend

using the BBK� with MARK� algorithm as it is the

fastest for computing K� scores.

(E) Candidate resistance mutations are pruned

when their ratio of positive to negative K� scores

indicates a mutation does not cause resistance

or if the target amino acid requires a mutation in

all three DNA bases.

(F and G) (F) RESISTOR computes mutational

probabilities using a protein’s coding DNA

along with cancer-specific trinucleotide mutational

probabilities for lung adenocarcinoma (abbreviated

as LuAd), sliding a window (G) over 50- and

30-flanked codons.

(H and I) (H) RESISTOR employs a recursive graph

algorithm to compute the probability that a

particular amino acid will mutate to another amino

acid (I).

(J) Finally, RESISTOR uses Pareto optimization on the

positive and negative K� scores, the mutational

probabilities, and hotspot counts to predict

resistance mutants.
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probability, and maximizes the count of resistance-causing mu-

tations per amino acid. Figure 1 shows an overview how these

axes are implemented in our algorithm. It should be mentioned

that, as a generalizable method, additional resistance-causing

criteria could be trivially added to RESISTOR for further refinement.

Structure-based positive and negative design
We use the K� algorithm in OSPREY to predict an ε-accurate

approximation to the binding affinity (Ka) in four states: (1) the

wild-type structure bound to the endogenous ligand, (2) the

wild-type structure bound to the therapeutic, (3) the mutated

structure bound to the endogenous ligand, and (4) the mutated

structure bound to the therapeutic. This ε-accurate approxima-

tion is called the K� score (Georgiev et al., 2008; Hallen et al.,

2018). In order to calculate the K� score of a protein:ligand com-

plex, it is necessary to have a structural model of the atomic co-

ordinates. Experimentally determined complexes have been

solved for EGFR bound to an analog of its endogenous ligand

(PDB: 2itx), erlotinib (PDB: 1m17), gefitinib (PDB: 4wkq), and osi-
mertinib (PDB: 4zau) (Yun et al., 2007; Stamos et al., 2002; Yo-

saatmadja et al., 2014, 2015). Similarly, we used the crystal

structure for BRAF bound to dabrafenib (PDB: 4xv2) and vemur-

afenib (PDB: 3og7) (Zhang et al., 2015; Hodis et al., 2012). Exper-

imentally determined complexes of BRAF bound to encorafenib,

PLX-8394, and an ATP analog in an active conformation do not

exist, so we instead modeled the ligands into BRAF in its acti-

vated conformation (for additional details on model selection

and preparation see the STAR Methods). We used these pre-

dicted complex structures for our resistance predictions.

We added functionality to OSPREY that simplifies the process

of performing computational mutational scans. A mutational

scan refers to the process of computing the K� score of every

possible amino acid mutation within a radius of a ligand. RESISTOR

uses this functionality to create the initial set of candidate mutant

sequences by selecting and computing the K� scores for each

amino acid within a 5 Å radius of the drug or the endogenous

ligand. This generated a search space of 2471 sequences. We

then set all residues with side chains within 3 Å of the mutating
Cell Systems 13, 830–843, October 19, 2022 833
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residue to be continuously flexible for the RESISTOR K� designs.

Each sequence has an associated conformation space size

dependent on the total number of mutable and flexible residues,

which one can use as a heuristic to estimate the difficulty

of computing a complex’s partition function. The average

conformation space size of each sequence was � 5:931010

conformations, thus computing the partition functions is only

possible usingOSPREY’s pruning and provable ε-approximation

algorithms (Gainza et al., 2012; Hallen et al., 2018; Jou et al.,

2020). Empirical runtimes of the positive- and negative-K� de-

signs are shown in the STAR Methods. The change in the K�

score upon mutation for the endogenous ligand (positive design)

and drug (negative design) becomes two of the four axes of opti-

mization. These two axes also form the basis of a pruning step

(described in section ‘‘Reducing the positive prediction space’’).

Computing the probability of amino acid mutations
To convert the trinucleotide to trinucleotide probabilities into

amino acid to amino acid mutational probabilities, RESISTOR con-

structs a directed graph with the trinucleotides as nodes and the

probability that one trinucleotide mutates into another trinucleo-

tide as directed edges. It then reads the cDNA of the protein in a

sliding window of 50- and 30-flanked codons since the two DNA

bases flanking a codon are necessary to determine the probabil-

ities of either the first or third base of a codon mutating. We

designed a recursive algorithm to traverse the graph and find

all codons that can be reached within n single-base mutations,

where n is an input parameter. The algorithm then translates

the target codons into amino acids and, as a final step, sums

the different probabilities on each path to an amino acid into a

single amino acid mutational probability (see Figures 1F–I).

One can either (1) precompute a cancer-specific codon-to-

codon lookup table consisting of every 50- and 30-flanked codon

to its corresponding amino acid mutational probabilities or (2)

read in a sequence’s cDNA and compute the mutational proba-

bilities on the fly. The benefit of (1) is it only needs to be done

once per cancer type and can be used on an arbitrary number

of sequences. On the other hand, when assigning mutational

probabilities to proteins that have strictly fewer than 45 amino

acids, it is faster to compute the amino-acid-specific mutational

signature on the fly. In both cases, the algorithm is strictly poly-

nomial and bounded byOðkn9Þ, where k is the number of codons

with flanking base pairs (upper-bounded by 45) and n is the num-

ber of mutational steps allowed, which in the case of RESISTOR is

2. An implementation of this algorithm is included in the free and

open-source OSPREY repository on GitHub (Hallen et al., 2018).

Identifying mutational hotspots
After calculating the positive and negative change in affinity DKa

and determining the mutational probability of each amino acid,

RESISTOR prunes the set of candidate mutations (see section

‘‘Reducing the positive prediction space’’). Post pruning, it

counts the number of mutations at each amino acid location.

This count is necessary to determine whether a residue location

is likely to become a ‘‘mutational hotspot,’’ namely a residue

location where many mutations are predicted to confer resis-

tance. Correctly identifying mutational hotspots is vital because

they indicate that a drug is dependent on the wild-type identity of

the amino acid at that location, and it is likely that many muta-
834 Cell Systems 13, 830–843, October 19, 2022
tions away from that amino acid will cause resistance. Conse-

quently, the fourth axis used in RESISTOR’S Pareto optimization

is the count of predicted resistance-conferring mutations per

residue location, termed ‘‘hotspot cardinality.’’
Reducing the positive prediction space
Prior to carrying out the multi-objective optimization to identify

predicted resistance mutations, we prune the set of candidates.

First, we introduce a cutoff based on the ratio of K� scores of

positive and negative designs, an adaption from Kaserer and

Blagg (2018). We determine the average of the K� scores for

the drug and endogenous ligand across all of the wild-type de-

signs for the same protein. The cutoff c is:

c =
c0KL

�

KD
� ; (Equation 4)

where c0 is a user-specified constant, K
L

�
is the average of the

K� scores for the wild-type protein bound to the endogenous

ligand, and KD

�
is the average of the K� score for the wild-type

protein bound to the drug. We recommend in practice to set c0
to be greater than the range ðK�

max �K�
minÞ of wild-type K�

scores—we set it to 100 for the tyrosine kinase inhibitor (TKI) pre-

dictions. (In the future, c0 could be learned from running RESISTOR

on a resistance mutation dataset for homologous systems and

examining the K� scores.) A mutation m is predicted to be resis-

tant when:

K�
LðmÞ

K�
KD
ðmÞ>c; (Equation 5)

where K�
LðmÞ is the K� score of the endogenous ligand bound

to themutant, and K�
DðmÞ is theK� score of the drug bound to the

mutant.

We also prune mutations predicted to completely ablate

endogenous ligand binding, i.e., the predicted K� score of the

protein and endogenous ligand is 0, because such a mutation

renders a critical protein non-functional. This is particularly detri-

mental to a cancer cell, which relies heavily on the activity of a

protein. We lastly prune the predicted resistance mutation can-

didates by removing all mutations that cannot arise within two

DNA base substitutions. Whether an amino acid can be reached

within two DNA base substitutions is determined by the algo-

rithm described in section ‘‘Computing the probability of amino

acid mutations’’, and if it cannot, then that particular mutation

is assigned a mutational probability of 0 and pruned.
RESISTOR identifies 8 known resistance mutations
in EGFR
We evaluated a total of 1,257 sequences across the three TKIs

for EGFR. Among these sequences, the average conformation

space size for computing a complex’s partition function was

� 1:33 107. After we ran the RESISTOR algorithm on these se-

quences, a total of 108 mutants were predicted as resistance-

conferring candidates for all three inhibitors combined from a

purely thermodynamic and probabilistic basis, i.e., these muta-

tions were required to lower the affinity of the drug in relation

to the endogenous ligand (K� positive and negative design,

Figures 1A–D) and could be formed in patients by less than



Table 1. RESISTOR correctly identified 8 resistance mutations in

EGFR to erlotinib, gefitinib, and osimertinib

RESISTOR identifies clinically relevant resistance mutations in EGFR

Osimertinib Erlotinib Gefitinib

L792Ha T790Ma,b T790Ma,b

G796Ra,b G796Da –

G796Sa – –

G796Da – –

G796Ca – –

For osimertinib, G796R, G796S, G796D, and G796C were on the

RESISTOR-identified Pareto frontier. L792H was in the 2nd Pareto rank.

For erlotinib, both T790M and G796D were on the Pareto frontier. For ge-

fitinib, T790M was also on the Pareto frontier. Previous studies have

documented all of these resistance mutations as occurring in the clinic

(Yu et al., 2013; Avizienyte et al., 2008; Chen et al., 2017; Yang et al.,

2018; Ou et al., 2017; Fairclough et al., 2019; Li et al., 2021; Yang et al.,

2018; Zheng et al., 2017).
aIndicates that RESISTOR predicted the mechanism of resistance to be

decreased binding of the drug to the mutant. Note that these predicted

mechanisms are only attributed here if the predicted change in the

log10ðDK�ÞR 0:5.
bIndicates that RESISTOR predicted the mechanism of resistance to be

improved binding of the endogenous ligand to the mutant.
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three-base pair exchanges (calculating mutational probabilities,

Figures 1F–I). To further prioritize mutations and identify those

that are most likely to be clinically relevant, we then computed

the Pareto frontier over the four axes for each drug (Figure 1J).

Out of these 108 candidates, RESISTOR correctly prioritized eight

clinically significant resistancemutants, with 7 of the 8 in the Par-

eto frontier of the corresponding inhibitor and the remaining

mutant in the 2nd Pareto rank (see Table 1). The full set of predic-

tions are in Tables S1–S3 andData S1–S3. A detailed description

of the result for each inhibitor is included in the sections below.

EGFR treated with erlotinib and gefitinib

Of the 462 sequences evaluated for the TKI erlotinib, RESISTOR

identified 50 as candidate resistance mutations. Pareto ranking

placed 19 sequences on the frontier, 13 sequences in the second

rank, and 11, 6, and 1 sequences in the third, fourth, and fifth

ranks, respectively. RESISTOR correctly identified two clinically

significant mutations, T790M andG796D, as being on the Pareto

frontier (Yu et al., 2013; Avizienyte et al., 2008). This is concor-

dent with empirical data showing that T790M is, by far, the

most prevalent resistance mutation that occurs in lung adeno-

carcinoma treated with erlotinib (Tate et al., 2019). Similarly, for

gefitinib, RESISTOR evaluated 438 sequences and identified 22

as candidate resistance mutants. The most relevant clinical

mutant, T790M, is found on the Pareto frontier.

EGFR and osimertinib

RESISTOR evaluated 357 OSPREY-predicted structures of

EGFR bound with osimertinib and EGFR bound with its endoge-

nous ligand. Of those, 36 were predicted as resistance

candidates. Pareto optimization placed 16 sequences on the

frontier, 2 sequences in rank 2, 8 sequences in rank 3, 1

sequence in rank 4, and 5 sequences in rank 5. RESISTOR correctly

identified five clinically significant resistance mutations to osi-

mertinib: L792H, G796R, G796S, G796D, and G796C (Chen

et al., 2017; Yang et al., 2018; Ou et al., 2017; Fairclough et al.,
2019; Li et al., 2021; Yang et al., 2018; Zheng et al., 2017), and

while L792H was in the 2nd Pareto rank, all of the other correctly

predicted resistance mutations are on the Pareto frontier.

Two osimertinib resistance mutations, in particular, stand out:

L792H andG796D (see Figure 2). Both of thesemutants have ap-

peared in the clinic (Zheng et al., 2017; Chen et al., 2017; Yang

et al., 2018; Ou et al., 2017). OSPREY generated an ensemble

of the bound positive and negative complexes upon mutation,

providing an explanatory model for how resistance occurs. In

both cases, the mutant side chains are much bulkier than the

wild-type side chain (Figures 2A and 2D) and thus are predicted

to clash with the original osimertinib binding pose (Figures 2B

and 2E). Consequently, in both cases, the ligand is predicted

to translate and rotate to create additional space for the mutant

side chains (Figures 2C and 2F). We hypothesize that this move-

ment weakens the other molecular interactions osimertinib

makes in the EGFR active site.

In the case of G796D, there are additional factors that

contribute to acquired resistance. First, the mutation to aspar-

tate introduces a negative charge, which probably leads to elec-

trostatic repulsion with the carbonyl oxygen of the osimertinib

amide (Figure 2F, highlighted with a dashed oval). In addition,

the exit vector of the hydrogen bound to the amide nitrogen

does not allow a hydrogen bond with the aspartate. Second,

the allyl group of osimertinib must be in close proximity to

C797 for covalent bond formation. In fact, C797 is so important

to osimertinib’s efficacy that mutations at residue 797 confer

resistance (Thress et al., 2015; Arulananda et al., 2017). Even if

osimertinib still binds to G796D, the allyl group would have to

move away from C797 (Figure 2F, highlighted with a black ar-

row). This would prevent covalent bond formation and thus

reduce the efficacy of osimertinib considerably. Lastly, it is likely

that the mutation away from glycine reduces the conformational

flexibility of the loop, incurring an entropic penalty while also

plausibly making it more difficult to properly align osimertinib

and C797.

RESISTOR predicts previously unreported resistance
mutations in BRAF and provides structural models
In addition to retrospective validation by comparison with exist-

ing clinical data for EGFR, we used RESISTOR to predict how mu-

tations in the BRAF active site could confer resistance. Specif-

ically, we used RESISTOR to predict which of the 1,214 BRAF

sequences would be resistant to four kinase inhibitors—vemur-

afenib, dabrafenib, encorafenib, and PLX8394. On the Pareto

frontier for vemurafenib are 13 mutations, for dabrafenib are 16

mutations, for encorafenib are 15 mutations, and for PLX8394

are 15 mutations. The full sets of predictions are included in

Tables S1–S7. To validate RESISTOR’S predictions, we compared

them with two sources of experimental data: a saturation muta-

genesis variant effect assay from Wagenaar et al. (2014) and a

cell-based kinase conformation reporter assay termed KinCon

(Röck et al., 2019; Mayrhofer et al., 2020). Furthermore, we car-

ried out additional KinCon experiments on a number of RESISTOR

predictions to validate RESISTOR’S predictive capabilities.

Retrospective and prospective validation of RESISTOR

predictions using the BRAF-KinCon biosensor reporter

KinCon, developed by Stefan and colleagues, is an in-cell pro-

tein-fragment complementation assay (PCA) that provides a
Cell Systems 13, 830–843, October 19, 2022 835



Figure 2. Structural models predicted by

OSPREY agree with experimental data and

explain mechanisms of osimertinib resis-

tance to EGFR mutations L792H and G796D

Structural models predicted by OSPREY of EGFR

wild-type (blue) and resistance mutations (red)

bound to osimertinib (yellow sticks). The histidine

(A) and glutamate (D) side chains (red sticks) in the

EGFR L792H (A) and G796D (D) mutations are

bulkier than the wild-type leucine (A) and glycine

(C) residues (blue sticks). They clash with osi-

mertinib in its original binding pose as highlighted

by the sphere representation in (B) and (E). (C and

F) To allow for the accommodation of osimertinib in

the modeled EGFR mutant structures (red sticks),

the inhibitor’s position within the binding pocket

moves from the experimentally determined binding

pose (yellow sticks). Movements are indicated by

black arrows. (F) In case of the G796D mutation,

the carboxylate moiety of D796 is predicted to be

in close proximity to the osimertinib amide oxygen

(highlighted with the dashed circle), thus leading to

electrostatic repulsion. This mutation site is adja-

cent to C797, which reacts with the allyl-moiety of

osimertinib to form a covalent bond in the wild

type. Due to the steric and electrostatic properties

of the G796D mutant, the allyl group is located

further away from C797 in the model, thus pre-

venting covalent bond formation. The movement

of the allyl group is indicated by the black arrow.
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readout of the activity conformation change of full-length BRAF

upon mutation or exposure to different inhibitors (Enzler et al.,

2020). KinCon’s bioluminescence assay functions by appending

parts of a luceriferase enzyme to theN andC termini of full-length

BRAF and observing the amount of bioluminescence, indicating

whether BRAF favors an open, catalytically active or a closed,

autoinhibited conformation (see Figure 3A) (Enzler et al., 2020).

Stefan and colleagues have demonstrated that activation of

BRAF either via upstream regulators such as EGFR and GTP

activated Ras or via tumorigenic mutations cause BRAF to favor

an open conformation (Röck et al., 2019; Mayrhofer et al., 2020).

The inhibitors bind to BRAF in the ATP binding site and cause

BRAF’s N and C termini to interact, shifting BRAF back toward

a more closed, intermediate state (see Figure 3A) (Röck et al.,

2019; Enzler et al., 2020; Mayrhofer et al., 2020). This implies

that for inhibitor binding and BRAF closing to occur, a mutation

(or a combination of mutations and/or upstream signaling

events) needs first to induce an open conformation. Not all clin-

ically observed BRAFmutations cause opening, even if they acti-

vate the MAPK pathway (e.g., L472C) (Mayrhofer et al., 2020;

Sen et al., 2012). In the same vein, not all BRAF resistance mu-
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tants show increased kinase activity,

in fact, several are classified as kinase

impaired (Mayrhofer et al., 2020; Zheng

et al., 2015; Sen et al., 2012). One promi-

nent mutation that shows both increased

kinase activity and induces an open

conformation is V600E (Figure 3B). Inhib-

itor treatment shifts the V600E conforma-

tional equilibrium toward a more closed
state (Röck et al., 2019; Mayrhofer et al., 2020). By contrast,

the gatekeeper mutations T529M and T529I do not confer the

opening of the kinase conformation and are thus insensitive to in-

hibitor treatment (Röck et al., 2019). However, in combination

with V600E, thesemutations do confer resistance to BRAF inhib-

itors to varying degrees. Given that we model a state that is

permissive of ligand binding at the outset (i.e., the ligand-bound

BRAF complex), our RESISTOR calculations align very well with the

reported KinCon measurements of double mutants (e.g., V600E/

T529M and V600E/T529I; see STAR Methods for additional de-

tails on modeling).

Specifically, the RESISTOR predictions of resistance concord

with the previous KinCon biosensor results for V600E/T529M

and V600E/T529I for three of the four inhibitors: vemurafenib,

dabrafenib, and PLX8394 (Röck et al., 2019). In the case of ve-

murafenib treatment, the proportion of open to closed conforma-

tions in the V600E/T529I mutant is not significantly different from

the untreated V600Emutant, indicating vemurafenib treatment is

not closing the conformational distribution in the double mutant

(Röck et al., 2019). These data agreewith the RESISTOR calculation

of the ratios of the log10 K� scores, which predict that both



Figure 3. KinCon biosensor results for

RESISTOR-predicted mutants

(A) Schematic depiction of Renilla luciferase

(RLuc; F1, fragment 1; F2, fragment 2) PCA-

based BRAF kinase conformation (KinCon) re-

porter system. Conformational rearrangement of

the reporter upon (de)activation of the kinase is

indicated. Closed kinase conformation induces

complementation of Rluc PCA fragments resulting

in increased Rluc-emitted bioluminescence

signal.

(B) Domain organization of the BRAF-KinCon

reporter (top) and basal bioluminescent signals

of the BRAF-wt (black), V600E (red), and

RESISTOR-predicted mutant (gray) KinCon bio-

sensors. Bars represent the mean signals, rela-

tive to BRAF-wt, in relative light units (RLUs) with

SD of four independent experiments (nodes).

Raw bioluminescence signals were normalized

on reporter expression levels, determined

through western blotting. Asterisk indicates the

level of significance versus the wild-type BRAF

biosensor.

(C) BRAF-KinCon biosensor dynamics induced via

treatment with respective BRAFi (1 mM for 1 h)

prior to bioluminescence measurement. BRAF-wt

and V600E KinCon variants serve as the control

(left). The RESISTOR-predicted mutants are shown in

a separate bar chart (right). Bars represent the mean signals, relative to the DMSO control, in relative light units (RLUs) with SEM of four independent experiments

(nodes). All experiments were performed in HEK293T cells 48 h post transfection. *p < 0.05; **p < 0.01; ***p < 0.001; n.s., not significant by t test.
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double mutants are resistant to vemurafenib, with V600E/T529M

more resistant. Treatment of BRAF with PLX8394 follows the

same pattern as vemurafenib, namely the V600E/T529I mutant’s

closed population increases only 1.2-fold compared with the un-

treated mutant, and the PLX8394-treated V600E/T529M mutant

does not noticeably alter the conformational distribution (Röck

et al., 2019). By contrast, the PLX8394-treated V600E mutant’s

closed population increases � 3-fold compared with the un-

treated population, indicating V600E sensitivity to PLX8394

(see Figure 3C). RESISTOR correctly predicted the V600E/T529I

and V600E/T529M double mutants are resistant to PLX8394,

with the change in the ratio of the log10 K
� scores of the two mu-

tants suggesting that V600E/T529M confers greater resistance.

In the case of dabrafenib, the treatment of the V600E/T529I

mutant closed the conformational distribution (2.4-fold more

closed compared with untreated) more than the treatment of

the V600E mutation (2-fold more closed compared with un-

treated), whereas the dabrafenib treatment of the V600E/

T529M mutant increased the closed conformational population

less effectively than the V600E mutant alone (1.4- versus

2-fold). This again agrees with the RESISTOR predictions, namely

that V600E/T529I remains sensitive to dabrafenib but V600E/

T529M is resistant. RESISTOR predicted that the V600E/T529I

and V600E/T529M mutants would be resistant to encorafenib,

but the KinCon data indicates that these mutants may actually

retain sensitivity to encorafenib, as the inhibitor induces BRAF’s

closed state.

In addition, all inhibitors except dabrafenib were predicted to

be sensitive against the G466Vmutation and showed the closing

of the kinase conformation (Mayrhofer et al., 2020). However, in

the case of dabrafenib, the response was comparable with ve-
murafenib, although vemurafenib was classified as sensitive.

Previous KinCon experiments have also shown that G466V

(and G466R and G466E [Zheng et al., 2015], see below) impaired

kinase function consistent with the reduced endogenous ligand

binding predicted by RESISTOR (see Data S4–S7) (Mayrhofer

et al., 2020).

In addition to the above retrospective validation, we chose a

few RESISTOR-predicted mutations and evaluated them using

the KinCon reporter. We selected the mutants G466E, G466R,

V471F, L505H, and G593D because they were prioritized by

RESISTOR for at least one of the investigated inhibitors and were

reported as patient mutations in either the COSMIC (Tate et al.,

2019) or cBioPortal (Cerami et al., 2012; Gao et al., 2013) data-

bases, using the curated set of non-redundant studies (see

Table 2).

The expression-normalized basal biosensor signal suggests

that both G466E and G466R mutants shift the conformation to

an opened state, comparable with the highly oncogenic V600E

variant and similar to the effect of the common non-small-cell

lung cancer mutation G466V (Mayrhofer et al., 2020). The

V471F, L505H, and G593D mutations, by contrast, did not

appear to induce a change in the active conformation (Figure 3B).

When exposed to BRAF inhibitors (Figure 3C), G466E and

G466R mutants showed the highest fold increase of the

biosensor signal for all four inhibitors tested. The majority of in-

hibitors, three out of four, were predicted as sensitive against

thesemutants. RESISTOR predicted G466E andG466R to be resis-

tant to dabrafenib, and although RESISTOR predicted dabrafenib

had lower sensitivity compared with encorafenib and PLX8394

(which is consistent with the KinCon results), dabrafenib-treated

mutants shifted to a closed conformation at least as much as
Cell Systems 13, 830–843, October 19, 2022 837



Table 2. Prioritized BRAF mutations selected for experimental testing

Mutation Vemurafenib Dabrafenib Encorafenib PLX8394 COSMIC cBioPortal

G466E – 1 – – 49 31

G466R – 1 – – 17 3

V471F – – 2 3 5 2

L505H – – 3 – 8 10

G593D 1 1 1 1 4 0

We selected these mutants because they were prioritized by RESISTOR for at least one of the investigated inhibitors and were reported as patient mu-

tations in either the COSMIC or cBioPortal databases. The numbers in the first four columns indicate the RESISTOR-predicted Pareto rank with mela-

noma mutational probabilities. The numbers in the last two columns indicate the number of patient samples containing the mutation reported in

the respective database (access date 01/12/2022). The absence of a Pareto rank indicates RESISTOR predicted the mutant would remain sensitive

to the drug.
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vemurafenib-treated mutants did. The L505H and G593D

KinCon mutants were not affected by any inhibitors, as those

mutations do not shift the kinase into an active opened kinase

conformation that is required for inhibitor binding. Although ve-

murafenib and dabrafenib do not appear to affect the V471F

mutant, encorafenib and PLX8394 did induce a closing of the ki-

nase, suggesting that the structural properties of the inhibitor

determine the binding affinity to this mutant. This is particularly

intriguing, given that the V471F mutation was selected because

we predicted it would confer resistance to encorafenib and

PLX8394. Although the KinCon results suggest that these two

compounds still retain binding to the V471F mutant, the mutant

itself did not induce a significant opening of the kinase confirma-

tion required for ligand binding. For the latter three mutations

(i.e., L505H, G593D, and V471F), it would therefore be required

to induce the open conformation some other way, for example,

by introducing the V600E mutation similar to T529I and T529M

described above, to investigate whether resistance would

develop to the inhibitors (Röck et al., 2019).

Retrospective validation of RESISTOR predictions using

BRAF saturation mutagenesis experiments

Wagenaar et al. (2014) examined the effects of BRAF inhibitor

binding sitemutations on inhibitor efficacy. To do so, they carried

out targeted saturation mutagenesis on the BRAF vemurafenib

binding site in the A375 human melanoma cell line and chal-

lenged the mutants with vemurafenib over a 3-week period (Wa-

genaar et al., 2014). They then sequenced the emergent clones

and measured the IC50 values of a subset of the mutants. Their

work demonstrated a correlation between a mutant’s deep

sequencing enrichment, i.e., the increase in the amount of an

amino acid sequence in a sample before and after the addition

of an inhibitor, and its IC50 value (Wagenaar et al., 2014). We,

therefore, compared their enrichment data with the RESISTOR pre-

dictions and determined RESISTOR’S vemurafenib resistance pre-

diction specificity to be 91%. There were five RESISTOR-predicted

resistance mutations that had increased enrichment over the

3-week period: T529M already discussed above (enriched

47.96-fold above the V600E baseline, which was the experi-

ment’s largest change in enrichment), T529L (enriched 18.57-

fold above baseline), T529F (enriched 7.87-fold above baseline),

G593I (enriched 4.84-fold above baseline), and L514E (enriched

3.73-fold above baseline). Furthermore, Wagenaar et al. deter-

mined the relative IC50 values of T529M, T529L, and G593I

that were, respectively, 2.05, 2.16, and 3.19 times larger than
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the IC50 for vemurafenib applied to the V600E mutant. The IC50

of T529F and L514E were not determined.

To further elucidate the molecular mechanisms conferring

resistance to the G593I and L514E mutants, we analyzed the

OSPREY-predicted structural models. Although neither mutant

requires a movement of vemurafenib (Figure 4A) akin to what

was observed in the EGFR and osimertinib structures (Figure 2),

the mutations still lead to a loss of favorable interactions and/or

the introduction of energetically unfavorable contacts. The resi-

due G593 (Figure 4B) may facilitate structural adaptions required

for BRAF to accommodate the vemurafenib propyl sulfonamide

moiety in the rear of the ATP binding site and the G593L muta-

tionsmay thus constrain the flexibility of this loop region. In addi-

tion, the leucine side chain may project near the fluoro-

substituted central phenyl ring and introduce steric clashes (Fig-

ure 4C). The neighboring D594 backbone interacts with the

vemurafenib sulfonamide nitrogen (Figure 4B), and this interac-

tion would be weakened in the G593L mutant. Furthermore,

residue L514 makes a range of hydrophobic contacts with ve-

murafenib (Figure 4D), including the central phenyl ring and the

propyl chain, which are lost in the L514E mutant (Figure 4E).

Complexity
There are a number of distinct steps in RESISTOR, each of which

has its own complexity. Although there are sublinear K� algo-

rithms, such as BBK� (Ojewole et al., 2018) with MARK� (Jou

et al., 2020), these algorithms so far have only been applied to

positive and negative design with optimization of specific

multiple objectives, such as minimizing/maximizing the bound

(respectively unbound) state partition functions and their ratios

for computing binding affinity or stability. COMETS (Hallen and

Donald, 2016) provably does multistate design optimizing

arbitrary constrained linear combinations of global minimum

energy conformation (GMEC) energies, but COMETS does not

model the partition functions required for calculating binding

affinity. A provable ensemble-based algorithm analogous to

COMETS for arbitrary multistate design optimization is yet to be

developed. Thus, general multistate K� design remains,

unfortunately, a problem linear in the number of sequences

and thus exponential in the number of mutable residues.

Computing K� itself, as a ratio of partition functions built from

the thermodynamic ensembles of the bound to unbound states,

can be expensive (Valiant, 1979; Nisonoff, 2015; Viricel et al.,

2016). In order to reduce the number of K� problems to solve,



Figure 4. Structural analysis of BRAF mutations G593I and L514E

(A) No major movements were required for vemurafenib to bind to the G593I

(yellow) and L514E (orange) mutation in comparison with the wild-type binding

pose (blue).

(B) BRAF G593 is located on the N terminus of the activation loop and may

facilitate conformational changes required to accommodate the vemurafenib

propyl sulfonamide moiety in the back of the pocket. The backbone of the

neighboring D594 residue interacts with the sulfonamide nitrogen of vemur-

afenib as indicated by black dashed lines.

(C) Mutation of G593 to L not only restricts the flexibility of the loop but also

puts the leucine side chain in too close proximity to the fluoro-substituted

phenyl ring (highlighted with the dashed circle).

(D and E) (D) Residue L514 is involved in a variety of hydrophobic contacts with

vemurafenib (indicated by yellow arrows), which are lost in the L514E

mutant (E).

Figure 5. Positive and negative design runtimes

Box-and-whisker plot showing the minimum, maximum, median, first quartile,

and third quartile runtimes per inhibitor:kinase pair. The whiskers extend to

points that lie within 1.5 times the interquartile range. Each dot represents the

number of seconds that RESISTOR took to compute the positive and negative K�

designs for a given mutation location in a kinase:inhibitor complex. In other

words, each dot represents the computation of 40K� scores. The computation

times across all the inhibitors range from 813 to 972,465 s, with the average

being 40,630 or 1,015 s per sequence. The designs were run on a 24-core,

48-thread Intel Xeon processor with 4 Nvidia Titan V GPUs.
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COMETS is employed as a pruning mechanism for all sequences in

which there are more than one mutation. Without COMETS,

RESISTOR would need to compute sN K� scores, where s is the

number of states and N is the number of sequences. With

COMETS, RESISTOR is able to avoid computing many of these K�

scores, as COMETS has been shown in practice to reduce the

number of required GMEC calculations by over 99% and to

reduce N for continuous designs by 96%, yielding an overall

speedup of over 53 105-fold (Hallen and Donald, 2016). Since

in this study we considered only single residue mutations, we

omitted the COMETS pruning step, but in any use of RESISTOR

that considers multiple simultaneously mutable residues, we

believe COMETS’ empirical sublinearity will make the difference

between feasible and infeasible searches.

Moreover, by using an approximation containing fixed parti-

tion function size and sparse residue interaction graphs, we
can use the BWM� algorithm (Jou et al., 2016) to compute the

K� scores in time O
�
nw2q

3
2w + kn log q

�
, where w is the branch

width and q the number of rotamers per residue. When we

have w = Oð1Þ, this is polynomial time. In this study, we found

that the ε-approximation algorithms using adaptively sized

partition functions, such as BBK� with MARK�, were fast

enough (Figure 5). However, for larger problems, the sparse

approximations allow us to approximate the necessary K�

scores for resistance prediction in time exponential only in the

branch width and thus polynomial time for fixed branch widths.

DISCUSSION

In this work, we report RESISTOR, a computational algorithm to

systematically investigate protein mutations and identify those

that have a high likelihood of lowering drug potency in compar-

ison with native substrates. In addition, we analyze the probabil-

ity that such a mutation is generated in cancer patients and thus

likely of clinical importance. Our algorithm applies the power of

Pareto optimization to resistance predictions, which provides

an objective way of prioritizing the most relevant mutations for

experimental testing. In addition, we used computationally pre-

dicted input structures of ligand-target complexes whenever

experimental data was lacking. This broadens the targets on

which RESISTOR can be used, as we have found that the availabil-

ity of high-resolution experimental ligand-target structures still

can present a major bottleneck in computational protein design.

We have applied RESISTOR to two case studies, EGFR and

BRAF, in a retrospective manner and, in case of BRAF, also

included prospective experimental data for validation. In EGFR
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and BRAF, the algorithm correctly identified resistance muta-

tions. Using the vemurafenib data from Wagenaar et al. (2014),

which is the most comprehensive dataset on BRAF mutations

and vemurafenib resistance available, we determined RESISTOR’S

vemurafenib resistance prediction specificity and sensitivity to

be 91% and 31%, respectively. In a data-rich setting such as

proteomics (e.g., Lilien et al., 2003), the sensitivity could be re-

garded as low. However, the prediction of antineoplastic resis-

tance mutations is a sparse data problem. Comprehensive data-

sets on drug resistancemutations on specific targets are virtually

non-existent. We speculate that the reason for this can be found

in the large number of individual mutants that must be generated

and tested. For example, in our study, we used RESISTOR to inves-

tigate 462, 438, and 357 individual mutants for erlotinib, gefitinib,

and osimertinib, respectively. Although this is computationally

feasible, it far exceeds the testing capacities of most experi-

mental groups. Clinical resistance data is even more limited.

Furthermore, even for those mutations that have been confirmed

to confer clinical resistance in patients, the underlying molecular

mechanisms often remain uninvestigated.

RESISTOR prioritizes escape mutations causing ablation of in-

hibitor binding and/or tighter substrate binding (the latter as a

proxy for KM). However, mutations affecting the drug target

could also mediate resistance via other molecular processes,

such as altering the stability of conformational states or affinity

of protein-protein interactions (Lyczek et al., 2021; Assaraf

et al., 2019). One limitation of this study is that we modeled

BRAF in its active conformational state. As Röck et al. (2019)

showed, BRAF inhibitors exhibited differences in specificity

and efficacy by shifting BRAF’s conformational probability distri-

bution from an open and active to a closed, inactive state. It is

plausible that mutations far from the active site could destabilize

the closed, inactive state and shift the conformational probability

distribution back toward the open, active state. The modeling of

the large allosteric destabilization of the inactive conformations

has been discussed extensively in our previous work (Chen

et al., 2009; Gorczynski et al., 2007), but its integration into

RESISTOR is left for future work.

In addition, clinical resistance is caused by several different

mechanisms of which the relative importance of escape muta-

tions can vary greatly. In some kinases, such as c-Abl, EGFR,

and FLT3, active site escapemutations are themain cause of ac-

quired resistance (Sierra et al., 2010). In other kinases, such as

BRAF, escape mutations are not the main mechanism of ac-

quired resistance (Rizos et al., 2014). Rather, splice variants,

amplification, and mutations in related genes such as N-RAS,

MEK1, MEK2, IGF-1R, and AKT comprise the majority of cases

of clinical resistance (Rizos et al., 2014). From this perspective,

the specificity of RESISTOR for BRAF and vemurafenib is remark-

able, and the sensitivity is in line with the fraction of resistance

mutations whose etiology definitively escaped via active site

mutation.

We believe that the remaining gap can be closed in future work

by modeling additional conformational flexibility, kinetics, and

the protein-protein interactions of additional effectors. Yet,

despite these limitations, RESISTOR is able to prioritize mutations

that are demonstrated to confer resistance in patients. Specif-

ically, our results show that detailed and combinatorial thermo-

dynamic computations can form the basis for predicting escape
840 Cell Systems 13, 830–843, October 19, 2022
mutations to TKIs. In the future, since some resistancemutations

exploit kinetic phenomena, kinetics could be incorporated for a

more comprehensive model.

CONCLUSIONS

RESISTOR contributes to the science of predicting resistance mu-

tations by providing an algorithm to enumerate the entire Pareto

frontier of multiple resistance-causing criteria. By categorizing

predicted resistance mutations by their Pareto rank, it allows

the drug discovery community to prioritize escape mutations

on the Pareto frontier. RESISTOR also provides structural justifica-

tion for the mechanism of each predicted escape mutation by

generating an ensemble of predicted structural models upon

mutation. In this study, we have applied RESISTOR to predict

resistance mutations in EGFR and BRAF for a number of

different therapeutics. We demonstrate that RESISTOR can also

be applied to computationally generated input structures,

although the accuracy of the results may be somewhat dimin-

ished compared with experimentally determined structures of

target-ligand complexes. However, computationally derived

models can still provide useful insights, especially when consid-

ering that the availability of experimental structures appears as

a major bottleneck. Although RESISTOR as described herein opti-

mizes over 4 objectives, as a general method, any number of

diverse objectives could be added. RESISTOR can be applied

not only to cancer therapeutics but also to antimicrobial or anti-

viral drug design. It is our hope that the drug discovery commu-

nity can use RESISTOR to design drugs that are less prone to

resistance.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse anti-BRAF Santa Cruz F-7: sc-5284; RRID:AB_626760

Chemicals, Peptides, and Recombinant Proteins

Vemurafenib MedChemExpress HY-12057

Encorafenib MedChemExpress HY-15605

Dabrafenib Selleckchem S2807

PLX8394 MedChemExpress HY-18972

Benzyl-coelenterazine Nanolight 301

Transfectin BioRad 1703352

Deposited Data

K* designs, mutational signatures This study; Alexandrov et al., 2013 https://doi.org/10.7910/DVN/DA0WWK

ftp://ftp.sanger.ac.uk/pub/cancer/AlexandrovEtA

Coding sequence for wt targets COSMIC, Bamford et al., 2004 http://cancer.sanger.ac.uk/cosmic

COSMIC mutation data, version 95 COSMIC, Bamford et al., 2004 http://cancer.sanger.ac.uk/cosmic

cBioPortal mutation data, version 4.0.3 Cerami et al., 2012 https://www.cbioportal.org/

Structures of the target-ligand complexes The Protein Data Bank;

This study

http://www.rcsb.org/pdb/home/home.do

https://doi.org/10.7910/DVN/DA0WWK

OSPREY-predicted structures of the

kinase:ligand complexes

This study https://doi.org/10.7910/DVN/DA0WWK

Experimental Models: Cell Lines

HEK293T ATCC N/A

Recombinant DNA

KinCon PCA reporters This paper; Roeck et al., 2019 N/A

Software and Algorithms

OSPREY 3 Hallen et al., 2018 https://doi.org/10.7910/DVN/DA0WWK

Maestro Release 2021-1 Schrödinger, LLC https://www.schrodinger.com/products/maestro

AmberTools21 Case et al., 2021 https://ambermd.org/GetAmber.php#ambertools

GOLD version 5.8.0 Jones et al., 1997 https://www.ccdc.cam.ac.uk/solutions/csd-

discovery/Components/Gold/

MOE 2015.1001 Chemical Computing Group ULC https://www.chemcomp.com/
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Bruce

Donald (brd+cellsys22@cs.duke.edu).

Materials availability
Materials are available upon request to the Lead Contact.

Data and code availability
d OSPREY design specifications and mutational signature probabilities required to reproduce the predictions in this paper have

been deposited at in the Harvard Dataverse and are publicly available as of the date of publication. DOIs are listed in the key

resources table.

d The version of OSPREY used in this paper has been deposited in the Harvard Dataverse and is publicly available as of the date

of publication. DOIs are listed in the key resources table. For new empirical designs, we recommend using the latest version of
e1 Cell Systems 13, 830–843.e1–e3, October 19, 2022

mailto:brd+cellsys22@cs.duke.edu
https://doi.org/10.7910/DVN/DA0WWK
ftp://ftp.sanger.ac.uk/pub/cancer/AlexandrovEtA
http://cancer.sanger.ac.uk/cosmic
http://cancer.sanger.ac.uk/cosmic
https://www.cbioportal.org/
http://www.rcsb.org/pdb/home/home.do
https://doi.org/10.7910/DVN/DA0WWK
https://doi.org/10.7910/DVN/DA0WWK
https://doi.org/10.7910/DVN/DA0WWK
https://www.schrodinger.com/products/maestro
https://ambermd.org/GetAmber.php#ambertools
https://www.ccdc.cam.ac.uk/solutions/csd-discovery/Components/Gold/
https://www.ccdc.cam.ac.uk/solutions/csd-discovery/Components/Gold/
https://www.chemcomp.com/


ll
Methods
OSPREY available for free at http://www.cs.duke.edu/donaldlab/osprey.php. All code for the OSPREY software package is

also available on GitHub at https://github.com/donaldlab/OSPREY3, and is free and open-source.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Culture and Antibodies
HEK293T cells were grown in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS). Tran-

sient transfections were performed with Transfectin reagent (Bio-Rad, 1703352). Mouse anti-BRAF (Santa Cruz, F-7: sc-5284) anti-

body was used to determine biosensor expression levels.

METHOD DETAILS

Preparation of Empirical and Docked Structures for K� Predictions
The crystal structures used for the EGFR predictions were adopted from Kaserer and Blagg (2018). A full description of the PDB en-

tries used can be found in that paper’s section Table S7, and details on how the structures were prepared for OSPREY predictions is

in that paper’s section Structure Selection and Preparation.

For BRAF, the crystal structures of vemurafenib (PDB: 3og7, Hodis et al., 2012) and dabrafenib (PDB: 4xv2, Zhang et al., 2015) in

complex with BRAF V600E were selected as input for RESISTOR. Both structures have been prepared using the default setting of the

Protein PreparationWizard (Sastry et al., 2013) inMaestro (Schrödinger, LLC,). In the case of encorafenib and PLX8394, crystal struc-

tures of structurally closely related, but not the identical, molecules were available. These experimental complexes were used to

generate encorafenib and PLX8394 models. Encorafenib was docked into PDB id 4xv3 (Zhang et al., 2015) using the default settings

of the induced fit docking procedure in Maestro (Farid et al., 2006; Sherman et al., 2006a, 2006b; Schrödinger, LLC). For validation,

the co-crystallized ligand PLX7922 was re-docked. The highest scored docking pose of encorafenib was selected for further inves-

tigation. We found that the conserved substructures in encorafenib and PLX7922 aligned very well in this docking pose.

For PLX8394, re-docking of the co-crystallized ligand PLX7904 (PDB: 4xv1, Zhang et al., 2015) failedwith the induced fit docking pro-

cedure, butwas successful using a rigid dockingworkflow inGOLDversion 5.8.0 (Jones et al., 1997). The binding sitewasdefinedas 6 Å

around the ligand and the water molecule HOH905 was set to toggle and spin. The default settings of all other parameters were used.

An experimental structure of the endogenous ligand ADP was available, however, BRAF adopted in inactive conformation in this

complex. Apo BRAF in its active conformation (PDB: 4mne, Haling et al., 2014) was thus combined with ANP-bound protein kinase

c-src (PDB: 2src, Xu et al., 1999) to generate an active, endogenous ligand-bound BRAF complex. This model was used as template

to build a BRAF:ADP homology model in the Molecular Operating Environment (Chemical Computing Group ULC) using the default

settings. This included refinement steps to resolve potential steric clashes in the rather crude ANP-BRAF input template.

As we note in these preceding paragraphs, in each case the BRAF structure we modeled was in its active conformation. There are

some mutations, such as V600E, that are activating mutations and shift BRAF’s conformational probability distribution to the active

state (Röck et al., 2019; Mayrhofer et al., 2020).With use of RESISTOR for mutational scanning of single point mutations within the active

site, we assumed that the mutation is either itself activating or is a secondary mutation following an activating mutation, such as

V600E. In our discussion of RESISTOR predictions of the BRAF double mutants V600E/T529M and V600E/T529I in section ‘‘Retrospec-

tive and prospective validation of RESISTOR predictions using the BRAF KinCon biosensor reporter’’, our assumption was that the

V600E mutation is the activating mutation (which the existing drugs are effective against) and T529M/I are the secondary, resis-

tance-causing mutations.

For all complexes, water molecules not involved in mediating interactions between the ligand and the target were deleted and only

residues with a 12 Å radius around the ligand were kept in the final input structures.

Evaluation of Ligand Affinity
The command line interface of OSPREYwas used to generate distinct YAML design files for each residuewithin 5 Å of a ligand. These

YAMLdesign files specify the input structures, themutable residues, the flexible residues, and connectivity templates forOSPREY. To

create the forcefield parameters files for the inhibitors and endogenous ligands,weused theAntechamber program in theAmberTools

software package (Case et al., 2021). Then, to calculate the K� scores we used OSPREY with the following command input:

osprey affinity –design <YAML design file> –epsilon 0.63 –frcmod <force field modification file> –stability-

threshold -1

where <YAML design file> was replaced with the individual YAML design file and <force field modification file> was re-

placed with the AmberTools-generated file. The YAML design and forcefield modification files used in this study are available in

the Harvard Dataverse (see key resources table).

Luciferase PCA analyses
We transiently overexpressed indicated versions of the Rluc-PCA–based KinCon biosensors in 24-well plate formats. Experiments

were performed 48h post transfection. For the luciferase-PCA measurements, the growth medium was carefully removed and the
Cell Systems 13, 830–843.e1–e3, October 19, 2022 e2
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cells were washed with phosphate-buffered saline (PBS). Cell suspensions were transferred to 96-well plates and subjected to lumi-

nescence analysis using the PHERAstar FSX (BMG Labtech). Luciferase luminescence signals were integrated for 10 seconds

following addition of the Rluc substrate benzyl-coelenterazine (NanoLight, #301). Cell lysates were prepared post RLU measure-

ments. Expression levels of the biosensor were determined via western blot analysis.

The K� algorithm
K� is an ε-accurate algorithm for computing a provable approximation to the affinity constant Ka. It is implemented in the OSPREY

computational protein design software package (Lilien et al., 2005; Hallen et al., 2018). K� is defined as the quotient of the bound to

unbound partition functions of a protein:ligand system for a given amino acid sequence. For a proof that K� approximates Ka see

Appendix A of Lilien et al. (2005).

K� calculates an ε-accurate partition function for three structures: the bound protein:ligand complex (denoted PL), the unbound

protein (denoted P), and the unbound ligand (denoted L). Let X be an arbitrary state, X ˛ fP;L;PLg. The partition function is a sum-

mation of the Boltzmann-weighted energies for all of the conformations in the thermodynamic ensemble of X. Let s denote an arbi-

trary amino acid sequence, then the partition function of s in state X (which we donate as qXðsÞ) is:
qXðsÞ =

X
c˛QX ðsÞ

exp ð � EðcÞ=RT Þ; (Equation 6)

whereQXðsÞ is the entire conformational ensemble of sequence s in stateX, and c is a single conformation from that ensemble. EðcÞ
is the energy of conformation c. R is the ideal gas constant and T is the temperature in absolute Kelvin.

The K� score for a sequence s approximates Ka:

K�ðsÞ = qPLðsÞ
qPðsÞqLðsÞ : (Equation 7)

By using anA� search overQXðsÞ to generate an ordered, gap-free list of low energy conformations, theK� algorithms generates an

ε-approximation of the partition function qXðsÞ and the ensemble-complete K� value. This approximation is known as the K� score.
Inputs to the K� algorithm include 1) an input structure; 2) a conformation library; 3) an energy function; 4) ε, and; 5) flexibility and

mutability choices.

EmpiricalRESISTOR runtimes: The RESISTOR computation entails three stages: 1) computing the positive and negative K� designs; 2)
assigningmutational signature probabilities to eachmutation, and; 3) run Pareto optimization over the four axes. Steps 2 and 3 empir-

ically take a negligible amount of time, on the order of seconds. Step 1, however, computes two partition functions for each sequence

and can take more time. Figure 5 shows the empirical runtime (in seconds) that it took our computers to run the positive and negative

K� designs, where a design mutated a residue to each of the 19 other possible amino acids.

QUANTIFICATION AND STATISTICAL ANALYSIS

In Figure 3, the student’s T-test was used to evaluate whether the mean of the RLU of a mutant was significantly different from that

of the relative DMSO control. The SEM was used with n = 4. Significance was defined to three different p-levels, where *p< 0:05,

**p< 0:01, and ***p< 0:001.

To compute the specificity and sensitivity values reported in section ‘‘Discussion’’, we used the dataset in Table S1 fromWagenaar

et al. (2014). We then reduced this set to those mutants for which RESISTOR made a prediction (RESISTOR made predictions for se-

quences with a mutated amino acid within 5 Å of the inhibitor or endogenous ligand). If RESISTOR predicted that a mutation caused

resistance and Wagenaar et al. indicated that the mutant increased normalized drug enrichment, then that was considered a true

positive. If RESISTOR predicted that a mutation was benign and Wagenaar et al. did not find increased drug enrichment, then that

was considered a true negative. The specificity and sensitivity values were computed using their standard formulas.
e3 Cell Systems 13, 830–843.e1–e3, October 19, 2022
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