
Neuro-Symbolic Learning of Lifted Action Models from Visual Traces

Kai Xi1, Stephen Gould1, Sylvie Thiébaux1, 2

1School of Computing, The Australian National University
2LAAS-CNRS, Université de Toulouse

oliver.xi@anu.edu.au, stephen.gould@anu.edu.au, sylvie.thiebaux@anu.edu.au

Abstract
Model-based planners rely on action models to describe avail-
able actions in terms of their preconditions and effects. Yet,
manually encoding such models is challenging, especially in
complex domains. Numerous methods have been proposed to
learn action models from examples of plan execution traces.
However, high-level information, such as state labels within
traces, is often unavailable and needs to be inferred indirectly
from raw observations. In this paper, we aim to learn lifted
action models from visual traces — sequences of image-
action pairs depicting discrete successive trace steps. We
present ROSAME, a differentiable neuRO-Symbolic Action
Model lEarner that infers action models from traces consist-
ing of probabilistic state predictions and actions. By combin-
ing ROSAME with a deep learning computer vision model,
we create an end-to-end framework that jointly learns state
predictions from images and infers symbolic action models.
Experimental results demonstrate that our method succeeds
in both tasks, using different visual state representations, with
the learned action models often matching or even surpassing
those created by humans.

1 Introduction
AI planning seeks to automatically identify an optimal
course of action for an agent to achieve a goal within its
environment. Planning algorithms typically rely on a plan-
ning domain model as input. The most critical component
in a planning domain model is the action model, which
describes the preconditions and effects of each action, en-
abling planners to reason about available actions and in-
fer their outcomes. However, obtaining such action models
can be challenging. Traditionally, they are often handcrafted
by human experts, making it expensive, time-consuming,
and error-prone. Acquiring action models from observa-
tional data would be much more cost-effective and reli-
able. Many proposals for this task assume fully observable
states and actions (Pasula, Zettlemoyer, and Kaelbling 2007;
Jiménez, Fernández, and Borrajo 2008; Rodrigues et al.
2012; Lamanna et al. 2021). The problem is that state and ac-
tion labels may not always be available. Labelling numerous
propositions in each state is particularly costly, leading to
many other attempts at reducing reliance on state observabil-
ity (McCluskey, Richardson, and Simpson 2002; Yang, Wu,

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Jiang 2007; McCluskey et al. 2010; Zhuo et al. 2010;
Zhuo, Muñoz-Avila, and Yang 2011; Cresswell and Gre-
gory 2011; Cresswell, McCluskey, and West 2013; Zhuo and
Kambhampati 2013; Aineto, Jiménez Celorrio, and Onain-
dia 2019). However, such reduction often comes at the ex-
pense of other aspects, including but not limited to complete-
ness, quality, and readability of the learned models. Recent
advancements in deep learning allow predicting states and
actions from raw observations using neural networks, poten-
tially striking a better balance between data collection cost
and learning outcome quality. Nevertheless, learning action
models typically involve symbolic logical inference, which
is generally non-differentiable. How to effectively combine
such symbolic inference with deep learning remains an open
problem.

Encouraged by the emergence of neuro-symbolic tech-
niques (Wang et al. 2019; Pogancic et al. 2020; Ahmed et al.
2022), we aim to meet this challenge with a neuro-symbolic
model. An ideal scenario would be to learn action models di-
rectly from video demonstrations of executed plans without
annotated supervision. In this paper, we take the first step
toward this goal by addressing the simpler problem of learn-
ing action models from visual traces, where we observe the
actions performed and the final state, but for the other states,
we only observe their images, and not the states labels di-
rectly, as shown in Fig. 1. By introducing a differentiable
relaxation of the rules governing action models, we can
integrate such a neuro-symbolic model with a deep learn-
ing computer vision model applied to visual observations,
thereby formulating an end-to-end method to jointly learn
human-readable, lifted action models and state predictors
from image sequences. We conduct experiments in several
planning domains using two different types of visual state
representations. The action models learned by our method
closely resemble, and sometimes improve on, those written
by humans.

2 Related Work
One of the barriers to learning action models is acquir-
ing a sufficient amount of supervised data. Obtaining fully-
observed state (proposition) labels is exceptionally expen-
sive. Some earlier works, such as LOCM (Cresswell, Mc-
Cluskey, and West 2009; Cresswell and Gregory 2011;
Cresswell, McCluskey, and West 2013) and Opmaker (Mc-

Cluskey, Richardson, and Simpson 2002; McCluskey et al.
2010), operate under the assumption that there is no direct
observation of states; they only take action sequences as in-
put. These methods infer states and predicates using heuris-
tic rules but provide no guarantee of completeness, sound-
ness, or the quality of the learned models.

A few more recent works have tackled, in a principled
way, the problems of simultaneously creating the symbols
required to represent the domain and learning action mod-
els based on the created symbols (Konidaris, Kaelbling, and
Lozano-Pérez 2014, 2018; Bonet and Geffner 2020; Ro-
driguez et al. 2021). In comparison, while we assume that
the symbols are given, our task is to jointly learn the action
models and ground the symbols from observed state images.
Additionally, while these methods bypass the cost of state
labelling, they require structured environment descriptions
(such as state-space graphs or a semi-Markov decision pro-
cess) as input, which demands a significant amount of tech-
nical expertise to construct. In contrast, our methods rely
solely on observing demonstrations of planning tasks.

Another approach to reducing reliance on state labelling
is to provide alternative information that is easier to ac-
cess, such as state images. A significant contribution in this
area is Latplan (Asai and Fukunaga 2018; Asai and Kajino
2019; Asai and Muise 2020; Asai et al. 2022), an unsu-
pervised neuro-symbolic model, based on an auto-encoder
framework that exclusively utilizes state images to recover
action models. While both Latplan and our approach apply
neuro-symbolic methods to state images, there are signif-
icant distinctions between the two works, leading to com-
plementary strengths and weaknesses. As an unsupervised
framework, Latplan requires no ground truth labelling and
operates within a latent space, which grants it the flexi-
bility to handle domains that are otherwise challenging to
express. However, the lack of interpretability of the latent
model poses challenges in model verification and evaluation.
Translating actions from the latent space into actions that
can be physically executed in the real world is also challeng-
ing. In contrast, we aim to learn human-readable models, at
the cost of providing minimal additional information, in the
form of the signature of the predicates and action symbols of
the model sought. Moreover, we produce first-order models,
whereas the models learned by Latplan are propositional. An
extension of Latplan was able to learn first-order representa-
tions for states (Asai 2019), but this has yet to be generalized
to action models. Liberman, Bonet, and Geffner (2022) pre-
sented a formulation to learn first-order representations from
parsed images. However, they did not discuss integrating the
deep learning image parsing model with their formulation to
create an end-to-end method.

3 Preliminaries
Here we define the planning models we consider and intro-
duce our notations. We assume that the reader is familiar
with first-order logic, including with the concept of substi-
tution. We write ϕ[σ] for the application of substition σ to a
first-order logic expression (or tuple/set of expressions) ϕ.

A typed planning domainD = 〈T, P,A,M〉 consists of:

• a set T of types;
• a set P of predicate symbols;
• a set A of action symbols;
• an action model M specifying the predicates in the pre-

conditions, add and delete effects of each action schema.
The types in T are organized into a tree (or hierarchy).

We say that a type t′ subsumes type t iff t′ is either t or an
ancestor of t in the tree. Each predicate symbol p ∈ P (resp.
action symbol a ∈ A) has a signature sig(p) (resp. sig(a)),
that is a vector ~t of types such that |~t| is the arity of p (resp.
of a). Given a set X of variables used as arguments of the
predicates and action schemas, a predicate takes the form
p(~x) where p is a predicate symbol and ~x ∈ Xarity(p). Sim-
ilarly each action schema takes the form a(~x) where a is
an action symbol, and ~x ∈ Xarity(a), with ~xi 6= ~xj ∀i 6= j.
We say that predicate p(~y) is relevant to action schema a(~x)
iff each variable in ~y matches a variable in ~x with an appro-
priate type: ∀i ∈ {1, . . . , arity(p)} ∃j ∈ {1, . . . , arity(a)}
such that ~yi = ~xj and sig(p)i subsumes sig(a)j . We write
R(a(~x)) for the set of predicates that are relevant to a(~x).

Given the predicate and action symbols and their re-
spective signatures, we want to learn an action model M
mapping each action schema a(~x), to a triple M(a(~x)) =
〈Pre(a(~x)),Add(a(~x)),Del(a(~x))〉 of sets of predicates
representing its (positive) preconditions, add effects and
delete effects. Action model M must satisfy the following:
• the predicates in Pre(a(~x)), Add(a(~x)), and Del(a(~x))

must be relevant to a(~x);
• add effects and preconditions cannot intersect, i.e.,
Add(a(~x)) ∩ Pre(a(~x)) = ∅;

• only preconditions can be deleted, i.e., Del(a(~x)) ⊆
Pre(a(~x)). We borrow from SAS+ terminology and
call preconditions that are not deleted prevail condi-
tions (Bäckström and Nebel 1995).

Given P andA, we writeM(P,A) for the set of action mod-
els that satisfy those constraints.

A planning instance I = 〈O,D〉 consists of a set of ob-
jects O and a planning domain D. Each object o ∈ O is
associated with a leaf type type(o) ∈ T of the type hierar-
chy. A proposition p(~o) with p ∈ P , ~o ∈ Oarity(p), and such
that sig(p)i subsumes type(~oi) for all i ∈ {1, . . . , arity(p)},
is a ground instance of a predicate p(~x) for some substitu-
tion σ such that p(~x)[σ] = p(~o). Similarly, an action a(~o)
with a ∈ A, ~o ∈ Oarity(a), and such that sig(a)i subsumes
type(~oi) for all i ∈ {1, . . . , arity(a)}, is a ground instance
of an action schema a(~x) for some substitution σ such that
a(~x)[σ] = a(~o), and its action model is M(a(~x))[σ]. We
write PI for the set of propositions,AI for the set of actions,
and S = 2PI for the set of states of the planning instance.

Let I be a planning instance, s ∈ S be a state, a ∈ AI
be an action such that M(a) = 〈Pre(a),Add(a),Del(a)〉.
We say that a is applicable in s iff Pre(a) ⊆ s. The result
of applying a in s is the successor state res(s, a) = (s \
Del(a))∪Add(a). An execution trace for planning instance
I is a sequence alternating between states and actions: e =
s1 → a1 → . . . → s|e| → a|e| → s|e|+1. We refer to s1
as the initial state and s|e|+1 as the final state of the trace.
Trace e is consistent with an action model M if and only

Figure 1: Observations in a visual trace obse compared to the
ground truth trace e. Symbol s denotes states, f is the final
state, and z denotes images. Shaded nodes are observed.

if, according to M , for all i ∈ 1, . . . , |e|, ai is applicable in
si and res(si, ai) = si+1. In the following, we write EkM
for the set of execution traces of length k that are consistent
with action model M .

4 Problem Formulation
We now formalize the problem of learning action models
from visual traces that we aim to solve. For an execution
trace e, we only observe a visual trace, which is a sequence
alternating images and actions: obse = z1 → a1 → . . . →
z|e| → a|e| → f where the ai represent fully observable
actions and f is the observed final state. Fig. 1 illustrates our
observations in a 6-step visual trace compared to the ground
truth execution trace. Note that for a given ground truth trace
e there can be multiple obse.

In this work, we assume that we are given a set {obsj}nj=1

of visual traces for a planning instance IM = 〈O,DM 〉with
DM = 〈T, P,A,M〉 for some unknown action model M ∈
M(P,A). We use a neural network with parameters θ to
estimate the probability of each state si from the state image
zi in each visual trace, i.e., Pr(si | zi; θ). The probability of
trace e given visual observation obse is then

Pr(e | obse; θ) =
|e|∏
i=1

Pr(si | zi; θ). (1)

Ideally, we wish to jointly choose an action model M
and neural network parameters θ that maximize the log-
likelihood of the visual traces being the observations of
traces that are consistent with the action model,

`(M, θ) =

n∑
j=1

log

 ∑
e∈E

|obsj |
M

Pr(e | obsj ; θ)

. (2)

The requirement of having fully observable final states is
to ensure that the learned results (both the state predictions
and the action model) are human readable. It also ensures
that we avoid degenerate solutions, e.g., empty sets for Pre,
Add and Del of all actions. However, we do not include im-
ages for final states because having both the image and label
for the same state would effectively make learning to predict
states fully supervised.

5 Probabilistic Action Model Network
Directly maximizing `(M, θ) is hard because predicting the
state probability Pr(si | zi; θ) requires the joint probabil-
ity of all propositions of the planning instance, and it is

intractable to compute the sum of Pr(e | obsj ; θ) over all
e ∈ E |obsj |M . Instead, we estimate a vector listing all propo-
sitions and their marginal probabilities of being true in state
s with the neural network. We call this a probabilistic state
vector denoted by ps ∈ [0, 1]|PI |. We relax the problem by
modifying the successor state operator res to be probabilis-
tic and compute the expected next probabilistic state vector
at each time step as p̂st+1 = res(pst, at). We then solve
for,

argmin
θ,M∈M(P,A)

n∑
j=1

|obsj |∑
t=1

‖p̂sj,t+1 − psj,t+1‖22 + L(at,psj,t)

where the final probabilistic state psj,|obsj |+1 is determined
from f and all other psj,t are estimated from zt. Here we
have added an additional term L(at,psj,t) to ensure that
the observed action at is applicable in the probabilistic state
psj,t at step t. We provide further details in Section 6.

The above relaxation requires a way to compute proba-
bilistic preconditions and effects of actions. However, since
action models are defined symbolically, the above optimiza-
tion problem is difficult to solve. Therefore, we relax the ac-
tion model M to a probabilistic action model with outputs
interpreted as probabilities, so that our objective becomes
fully differentiable with respect to θ andM and amenable to
standard back-propagation techniques.
Definition 1 A Probabilistic Action Model (PAM) is defined
as a tuple of three functions 〈pre, add , del〉, where for an
action schema a(~x) and a predicate p(~y) relevant to a(~x),
pre(a(~x), p(~y)), add(a(~x), p(~y)), and del(a(~x), p(~y)) are
probabilities of p(~y) being a precondition, an add effect, or
a delete effect of a(~x).

PAM Cases
As discussed in the preliminaries, we assume that for any
action model, add effects and preconditions cannot intersect,
and only preconditions can be deleted. Consequently, we can
enumerate all the possible relationships between a predicate
p(~y) and an action schema a(~x) and determine whether they
satisfy the above constraints. For any pair (a(~x), p(~y)) such
that p(~y) ∈ R(a(~x)), there are four mutually exclusive cases
that an action model can define:
• Case 1: p(~y) is not involved in the description of a(~x).
• Case 2: p(~y) is only an add effect of a(~x).
• Case 3: p(~y) is only a precondition of a(~x).
• Case 4: p(~y) is both a precondition and a delete effect,

but not an add effect of a(~x).
Therefore, we can consider the task of learning action

models as that of classifying the four cases for each pair
of relevant action schema and predicate. A PAM gives a
4-vector −→pra(~x),p(~y) for each pair of a(~x) and p(~y), where
p(~y) ∈ R(a(~x)), which represents a probability distribution
over the four discrete cases. These probability distributions
can be directly decoded into the functions pre, add and del :

pre(a(~x), p(~y)) = −→pra(~x),p(~y) · (0, 0, 1, 1) (3)

add(a(~x), p(~y)) = −→pra(~x),p(~y) · (0, 1, 0, 0) (4)

del(a(~x), p(~y)) = −→pra(~x),p(~y) · (0, 0, 0, 1) (5)

... ...
... So

ftm
ax

 ...

...

...

...

...

...

Probability
Distribution over
Four PAM Cases

d-dimensional
Latent Vectors

Figure 2: PAM network structure for an action symbol. The
number of input neurons is d and the PAM network is ap-
plied to each relevant predicate, where the output dimen-
sion is four. There is a batch of |R(a)| d-dimensional la-
tent vectors for each action symbol. The latent vectors are
randomly drawn from a stand normal distribution and fixed
during training.

These expressions can be interpreted as summing the
probabilities over the respective compatible cases. For in-
stance, the probability of p(~y) being a precondition of a(~x)
is the sum of the probabilities of cases 3 and 4.

PAM Network
Directly learning the probability distributions for a PAM is
non-convex and, therefore, very challenging. One method to
mitigate this issue is overparameterization, which is often
used to make optimisation problems smoother and to help
the model converge to the global minimum (Du et al. 2019).
Since our goal is to learn a discrete probability distribution,
we also leverage the fact that, through a sufficiently com-
plex function such as a neural network, any arbitrary distri-
bution can be generated from a set of samples drawn from a
Gaussian distribution (Doersch 2021). Combining these two
ideas, for each action schema, we overparameterize its PAM
into a PAM Network, with the inputs being a set of latent
vectors drawn from a standard Gaussian — one for each of
its relevant predicates. Subsequently, we create a multi-layer
perceptron (MLP) with an output size of four, followed by
a softmax layer to map from latent vectors to distributions
over the four PAM cases. The dimensionality d of the latent
vectors is an empirically determined hyperparameter. The
PAM network architecture is depicted in Fig. 2.

There are potentially infinitely many action schemas with
different variable arguments for each action symbol. How-
ever, these schemas all share the same action model up to
variable substitutions. Hence, to initialize the PAM network
for a(~x), we only need the cardinality of the set of rele-
vant predicates R(a(~x)). This cardinality can be efficiently
computed using action and predicate symbol signatures as
explained below. As a result, we can confidently base our
reasoning on a finite number of symbols without needing
to enumerate an infinite number of predicates and action
schemas. We only need to construct one PAM network for
each action symbol a ∈ A.

Given a predicate symbol p ∈ P and its signature sig(p),
we can easily count how many variables of each type t ∈ T
it requires. Let this be count(t, sig(p)). Similarly, given an
action symbol a ∈ A and its signature sig(a), we can count
how many variables of a type subsumed by t it provides. Let

Grounding
Map

PAM
Network

0

0

0

0

0

0

0

0

0

Randomly
Initialised
Gaussian

Propositional

Lifted

Relevant Indices

Figure 3: ROSAME architecture. The projection operation
π maps the output of the PAM network to relevant indices in
vectors of length |PI |. Indices not mapped take value zero.

this be subcount(t, sig(a)). For a given pair of symbols a and
p, if there exists a type t such that count(t, sig(p)) 6= 0 and
subcount(t, sig(a)) = 0, then we can infer that predicates
with symbol p are irrelevant to action schemas with symbol
a. In sum, we can compute the desired cardinality as:

|R(a)| =
∑
p∈P

∏
t∈T

subcount(t, sig(a))count(t,sig(p)) (6)

Note that the construction of PAM networks is not based
on objects. Therefore, PAM networks are decoupled from
planning instances and are transferable within a domain.

We decode PAM network outputs using Eq. 3–5 to obtain
PAMs for action symbols. For an action symbol a, the de-
coding results in three vectors prea, adda, and dela, each
of length |R(a)|, representing the lifted preconditions, add
effects, and delete effects for a. These values are mapped
to the corresponding positions of |PI |-length vectors for
generating propositional precondition and effect vectors for
grounded actions, as will be discussed next.

6 ROSAME
Based on PAM networks, we create a neuro-symbolic
model, named ROSAME, in order to compute the proba-
bilistic preconditions and effects of actions. Fig. 3 shows
the architecture of ROSAME, along with its inference on
an action at at the t-th step within a trace for a planning
instance I . We compute three vectors preat , addat , and
delat ∈ [0, 1]|PI |, where the j-th value represents the proba-
bility of proposition pj being the precondition, add or delete
effect of action at, respectively. If a proposition is relevant1
to at, these probabilities are determined by the correspond-
ing PAM for a. Otherwise, the action cannot affect or be
affected by the proposition, and all three values are set to
zero.

We maintain an ordering on all the propositions in the
planning instance. After grounding, we record the indices

1The notion of relevance straightforwardly transfers from ac-
tion schemas and predicates to actions and propositions obtained
by applying the same substitution to the variables.

of relevant propositions within the ordered list of all propo-
sitions for each action, as well as the mapping from each
action to its action symbol. Therefore, given an action at,
we can lift the action to its symbol a and utilize the corre-
sponding PAM Network to compute the lifted preconditions
and effects prea, adda, dela for a. Subsequently, we map
values in these vectors, each of length |R(a)|, to the rele-
vant indices in the full |PI |-length vectors preat , addat ,
and delat for the propositional preconditions and effects of
the grounded action at.

After training, we create one action schema a(~x) for each
action symbol a and extract its action model M(a(~x)) as
follows. For each of the action schema’s relevant predicates,
we take the corresponding latent vector, pass it through the
action symbol’s PAM network, and then add the predicate to
the action model according to the classification result. Note
that the correspondence between latent vectors and relevant
predicates was programmatically determined after initializa-
tion, which is also essential for mapping the lifted precon-
ditions and effects to the propositional preconditions and ef-
fects.

ROSAME is independent of planning instances. The
learnable parameters relating to the action model are fully
contained within the PAM network, structured solely based
on domain knowledge. The only difference between two
planning instances in the same domain is the set of relevant
proposition indices for each grounded action. A new plan-
ning instance only requires rerunning the grounding pro-
cess on a new list of objects without any changes to the
PAM network. As a result of learning a lifted action model,
ROSAME is able to transfer to other problem instances.
Specifically, we can efficiently train ROSAME on a small
instance and then apply it to a much larger instance within
the same domain without retraining.

Training Loss
We now detail the loss function used to train ROSAME.
Given an action model M and an execution trace e that is
consistent with it, by the definitions of consistency and of
the successor state operator res, ∀p ∈ PI ,∀t ∈ {1, . . . , |e|}:

p ∈ st+1 ⇐⇒ (p ∈ st ∧ ¬(p ∈ Del(at)))∨
(¬(p ∈ st) ∧ p ∈ Add(at)),

p ∈ Pre(at) =⇒ p ∈ st
(7)

The first formula says that a proposition p holds in state st+1

if and only if either p holds in state st and is not deleted by
action at, or p does not hold in state st but is added by action
at. Note that the first condition includes the case where p
both holds in state st and is an add effect of at, because
being an add effect implies not being a delete effect, as per
our assumptions in Section 3. The second formula in Eq. 7
says that if a proposition p is in the precondition of an action
at, and we have observed that at was applied at step t, then
p must hold in state st before action at is executed.

For any step t in 1, . . . , |obs|, we can use ROSAME to
infer the next state p̂st+1 by applying the the product logic
rules (Hájek, Godo, and Esteva 1996) to the first formula in
Eq. 7. For all p ∈ PI , Pr(p ∈ st+1) = Pr(p ∈ st) × (1 −

Pr(p ∈ Del(at))) + (1− Pr(p ∈ st))× Pr(p ∈ Add(at)),
hence we have:

p̂st+1 = pst × (1− delat) + (1− pst)× addat (8)

Note that here, we can translate the logical disjunction into
the summation of two probabilities because these two cases
are mutually exclusive. A PAM that is consistent with a
probabilistic prediction of a trace pred should infer next-
step states close to pred. Hence, we compute the mean
square error (MSE) between p̂st+1 and pst+1 at each step
t in the trace, where ps|pred|+1 is determined by the fully
observable final state.

To calculate the probability of at being applicable in state
st, we rephrase the second formula in Eq. 7 as a combination
of negation and conjunction: ¬(p ∈ Pre(at) ∧ ¬(p ∈ st)).
This probability can be computed as 1−preat × (1−pst).
There should be a high probability of each action being ap-
plicable at each step. We use an MSE between the computed
probability and an all-ones vector 1 to reflect this fact.

Prevail conditions A prevail condition of an action is a
precondition that is not deleted by the action (Bäckström and
Nebel 1995). Prevail conditions correspond to PAM case 3.
In an execution trace, the prevail condition holds both before
and after the execution of the action. However, this informa-
tion alone is not sufficient to distinguish PAM case 3 from
PAM cases 1 and 2, where the proposition is not involved
in the description of the action or it serves as an add effect.
Such confusion causes indistinguishability among models.

We introduce an additional prior bias to address the indis-
tinguishability problem. We assume that a relevant predicate
is a precondition of an action schema unless evidence from
data contradicts this assumption. Therefore, we give prefer-
ence to the model with the prevail condition. This prior bias
not only increases the likelihood of recovering prevail con-
ditions but also results in a more conservative action model,
which can be valuable in safety-critical situations. In prac-
tice, we introduce this prior bias using a loss term for each
action, computed as the MSE between preat and an all-ones
vector 1 at each step.

Given a set {predj}nj=1 of predictions for traces, the loss
used to train ROSAME is

`(θ,M) =

n∑
j=1

|predj |∑
t=1

Losspred︷ ︸︸ ︷
MSE(p̂st+1,pst+1) +

MSE(preat × (1− pst),0)︸ ︷︷ ︸
Lossapp

+λ ·MSE(preat ,1)︸ ︷︷ ︸
Lossbias

where λ < 1 is an empirically determined value that reflects
the influence scale of the prior bias.

ROSAME-I
We propose ROSAME-I (ROSAME from Images), an end-
to-end framework that combines ROSAME with a deep
learning computer vision (CV) model to learn action mod-
els from visual traces. Fig. 4 illustrates ROSAME-I’s learn-
ing process from a single visual trace. At the t-th step, the

CV model

ROSAME ROSAME

...

...
Visual
Trace

ROSAME

Current State
Prediction

CV model CV model

Next State
Inference

Figure 4: Learning action model on a visual trace with ROSAME-I.

5
2
3

1

4

Room 1

Room 2
2 4
3

1 5 6

Figure 5: Domains and visual representations. Left: Grid world representations (top) and corresponding hand-drawn states
(bottom) for Blocks World, Gripper, and Logistics domains. Digits 0 represent backgrounds, while other digits represent objects,
including blocks, balls, and packages. In the Gripper domain, the flipped color represents the two grippers. In the Logistics
domain, letters ‘A’ represent airplanes, and letters ‘T’ represent trucks; the same color indicates a package is carried by a
vehicle. Right: Synthesized representations for Blocks World, Towers of Hanoi, and 8-puzzle domains.

CV model predicts pst from the observed state image. Sub-
sequently, ROSAME uses the CV model’s prediction pst
and the action at to infer the next state p̂st+1 and calcu-
lates the action’s applicability loss Lossapp and the prior
bias Lossbias. After that, we compare ROSAME’s infer-
ence p̂st+1 with the CV model’s prediction for the next step,
pst+1, resulting in the prediction loss Losspred.

We assume that we have access to the ground truth la-
bels for the final state as supervision. To emphasize our fo-
cus on prediction consistency with the supervision, we in-
troduce a hyperparameter γ ≥ 1 to scale the prediction loss
at the last step. Intuitively, this hyperparameter controls the
balance between ROSAME-I correctly predicting the final
state and making coherent predictions for the previous states
while adhering to the logical constraints of action models.

7 Experiments
Data and Environment
We create two visual representations to test ROSAME-I.
First, we create state images using digit and letter figures
from the MNIST (Deng 2012) and EMNIST (Cohen et al.
2017) datasets to represent objects and backgrounds, arrang-
ing them in grids. We refer to this as the grid world represen-
tation. With this representation, we can efficiently construct
images for states and automatically generate visual traces

from simulations, allowing us to develop and test the end-to-
end nature of our method in a controlled setting. Fig. 5 (left)
provides examples of the grid world representations for the
three domains we consider, Blocks World (with five blocks),
Gripper (with six balls, two grippers and two rooms), and
Logistics (with six packages, four locations in two cities,
two trucks and two planes), along with the state they rep-
resent. Note that changing the order and positions of block
towers in the Blocks World domain, the positions of balls
within the same room in the Gripper domain, or the object
locations within each 3×3 grid in the Logistics domain does
not change the underlying state that the image represents.

For the Blocks World domain, we use an off-the-shelf ran-
dom problem generator (Slaney and Thiébaux 2001) to cre-
ate the initial states. Traces are generated from these ini-
tial states by selecting random applicable actions at each
step. For the Gripper and Logistics domains, we utilize the
trace generation component from the MACQ framework
(Callanan et al. 2022). Here, we generate a very long random
trace from a single initial state and then divide it into many
shorter traces of selected lengths—either 5 or 10 steps—
depending on the complexity of the domain and problem
size. Except for the first trace, later traces start from states
that are not the initial state. We skip some states to avoid
overlap between traces. For each trace generated in all three

Grid Classes |PI | # Traces # Steps #States #Epochs Learning Rate Error Acc
Blocks World
(grid world) 6 36 800 10 8000 200 Grid CNN: 10−5

MLP: 10−3

ROSAME: 10−3

0 98.27%

Gripper 14 28 1000 5 5000 100 0 90.54%
Logistics 35 72 2500 10 25000 150 0 96.41%
Blocks World
(synthesized) N/A 36 100 10 1000 100

10−3
0 97.78%

Towers of Hanoi N/A 91 70 5 350 70 1 99.64%
8-puzzle N/A 330 300 5 1500 300 4 99.79%

Table 1: Evaluation results for ROSAME-I.

domains, we randomly select digit and letter figures. These
figures remain consistent within an individual trace but are
re-selected randomly for each new trace, giving diverse rep-
resentations.

Next, we create a synthesized representation for the
Blocks World (with five blocks), Towers of Hanoi (with
four disks), and 8-puzzle domains. We utilize the PDDL-
Gym framework (Silver and Chitnis 2020) to construct re-
inforcement learning environments, where for each domain,
we generate a long trace through random exploration and
then cut it into traces of the required length, in the same way
as above. This synthesized representation is more holistic
and natural for humans to recognize. Example images for
this representation are displayed on the right of Fig. 5.

ROSAME-I is implemented using PyTorch.2 We train and
test ROSAME-I on the Google Colab Platform, with 83.5
GB RAM and a single A100 40GB GPU.

ROSAME Performance
In addition to visual traces, we collect fully observable traces
to assess ROSAME as a stand-alone tool. We sample traces
from the same domains and problem instances used for cre-
ating the grid world representations. We train ROSAME on
the dataset in a fully supervised manner. We set the PAM
Network latent dimension z to be 128 and the prior bias
scale λ to be 0.2. We train the models for 100 epochs us-
ing the Adam optimiser with a learning rate of 0.001.

Traces # Steps # States Error
Blocks World 10 10 100 0
Gripper 10 10 100 0
Logistics 10 10 100 0

Table 2: Data and performance of ROSAME.

As we treat the action model learning task as classifying
the four PAM cases for relevant action schemas and predi-
cates, we establish the Error metric for the learned models as
the count of misclassifications compared to the ground truth
models written by human. Results in Tab. 2 demonstrate that
ROSAME perfectly recovers the ground truth models for
the three domains with a limited amount of training data.
The training process completes in less than a minute without
GPU acceleration, highlighting the efficiency of our model.

2https://gitlab.com/xikaioliver2/ROSAME

ROSAME-I Performance
We combine ROSAME with a customized CV model for
the grid world representation. The CV model first applies
to each grid image a CNN classifier whose architecture is
adopted from LeNet (LeCun et al. 1998). The CNN out-
puts for each grid are concatenated and processed through
a multi-layer perceptron (MLP) to predict the truth values of
state propositions. For the synthesized images, we utilize a
ResNet-18 (He et al. 2016) and again replace the last fully-
connected layer with an MLP to predict state propositions.
We set the PAM Network latent dimension z to be 128, the
prior bias scale λ to be 0.2 (except for the 8-puzzle domain,
where we use a λ of 0.4), and the supervision bias γ to be
10. We use an Adam optimizer with β = (0.9, 0.999).

We evaluate the quality of the learned action model with
the Error metric defined above. For the CV model, we com-
pute the proposition prediction accuracy with a threshold of
0.5. Tab. 1 presents the evaluation results for ROSAME-I.
Our method recovers almost perfect action models across
different domains and with various visual representations.
Simultaneously, the CV models within ROSAME-I learn to
predict states from images accurately without incurring ad-
ditional labelling or training costs.

We reserve 10% of the traces collected as test traces for
the grid world representation. For the synthesized represen-
tation, we create and reserve another dataset with 100 traces
for testing. Note that we create our datasets by generating
random traces. Hence, some test state images and traces may
still appear in the training set due to the possibility of du-
plications within our entire dataset. However, we consider
this less of a problem for evaluating the CV models be-
cause we never provide direct supervision for any state im-
ages. For ROSAME-I to learn to predict states, it must pro-
gressively transfer supervision from back to front through
ROSAME. Therefore, the high accuracy of CV model pre-
dictions demonstrates that ROSAME can effectively reason
with the supervision signal and convey it to the CV model
for learning.

Errors in Towers of Hanoi and 8-puzzle
Upon closer examination of the errors appearing in Tab. 1,
we discover that the discrepancies are due to additional
prevail conditions. Tab. 3 shows the model learned by
ROSAME-I for the Towers of Hanoi domain. The learned
model has an additional prevail condition that requires a disc
to be placed on top of a larger disc (or peg) before it can be

(a) (b) (c)

Figure 6: CV model accuracy w.r.t. the number of supervisions (a) and images (b); scalability w.r.t. problem size (c).

Learned Model for Towers of Hanoi
move(?disc ?from ?to)
precondition:

(smaller ?from ?disc) (smaller ?to ?disc)
(on ?disc ?from) (clear ?disc) (clear ?to)

add effect:
(clear ?from) (on ?disc ?to)

delete effect:
(on ?disc ?from) (clear ?to)

Table 3: The action model learned by ROSAME-I for Tow-
ers of Hanoi. The predicate in bold does not appear in the
ground truth model written by human.

moved. It is worth noting that this condition trivially holds
for any valid states in the Towers of Hanoi domain. There-
fore, the learned model is actually correct despite being dif-
ferent from the ground truth. In fact, one might argue that the
learned model is better than the human-crafted one, as the
additional precondition can serve as a safety check, result-
ing in safer behaviour for some invalid problem instances.

It is not surprising that ROSAME-I learns this additional
prevail condition. The model is only trained on valid traces,
where the condition consistently holds before the execu-
tion of move actions. With the prior bias we introduced,
ROSAME-I is encouraged to include this condition as a pre-
condition unless there is sufficient counter-evidence in the
data. This mechanism also aids ROSAME-I to recover the
other three prevail conditions in the Towers of Hanoi do-
main.

In the preconditions of the move actions for the 8-puzzle
domain, the learned model additionally recovers relation-
ships between the target position and the original posi-
tion that are symmetrically reversed compared to their re-
lationships in the ground truth model, e.g., including both
dec(?by, ?py) and inc(?py, ?by) as preconditions of move-
up, resulting in correct but redundant prevail conditions.

Data Efficiency
We hypothesize that the presence of ROSAME enhances
the data efficiency of the CV model within ROSAME-I be-
cause ROSAME can infer with the evolving action model
and propagate a single supervision to multiple state images

for the CV model to learn from. To test this hypothesis,
we assess the performance of the CV model extracted from
two ROSAME-I models trained in the Blocks World do-
main with the synthesized representation, using traces of 5-
step and 10-step lengths, respectively. In each case, there is
one supervision in each trace. In contrast, we train a sep-
arate CV model with the same architecture using state im-
ages with fully supervised proposition labels. We then com-
pare the prediction accuracy among the models. As shown in
Fig. 6a, it is evident that with the same amount of supervi-
sion, the CV models extracted from ROSAME-I consistently
outperform the CV model trained in isolation. This result
confirms that data efficiency increases with the assistance of
ROSAME.

In contrast, Fig. 6b displays the model’s performance with
respect to the number of state images observed by the model.
It is clear that models extracted from ROSAME-I, trained on
traces where multiple images share a single goal state super-
vision, suffer performance loss because the level of supervi-
sion decreases. The longer the trace, the fewer supervisions
are available for the same number of states, leading to a de-
cline in model performance.

Scalability with Respect to Problem Size
Using the Logistics domain, we examine the scalability of
our method with respect to problem size. We generate prob-
lem instances that consist of two trucks, one plane, and two
cities, each with two locations, and use the grid world rep-
resentation. We vary the number of packages and determine
the problem’s size by counting the total number of objects
(comprising only trucks, planes, and packages since cities
and locations are static).

For each problem with a different size, we increase the
number of traces for training until ROSAME-I recovers the
ground truth model, resulting in the green line in Fig. 6c.
The figure also shows number of propositions (in red), and
the number of different states (in blue), which grow linearly
and exponentially, respectively, as a function of the prob-
lem size. As is evident from the figure, the amount of data
required for training ROSAME-I aligns with the proposition
space, avoiding the combinatorial nature and the exponential
growth of the problem state space. This result demonstrates
the satisfying scalability of our method.

(a) (b) (c)

(d) (e) (f)

Figure 7: Effect of λ (prior bias scale), γ (final state loss scale), and trace length on CV model prediction accuracy (top) and
learned action model error (bottom).

Effects of Hyperparameters and Trace Length
We study how the settings of hyperparameters affect
ROSAME-I’s performance, considering both the CV
model’s prediction accuracy and the learned action model’s
error. We vary the prior bias scale λ from 0 to 1, in 0.2 in-
tervals. As shown in Fig. 7a and 7d, the performance first
improves and then drops. This matches our expectation that
the prior bias helps recover prevailing conditions, but a large
prior bias may distract the model from trying to explain the
traces and lead to a degenerate solution. We also observe that
even for domains without any prevail condition (like Blocks
World), adding a small prior bias improves the performance,
as it helps prevent degenerate solutions by forcing changes
between consecutive states.

We also study the effect of the scale γ of the last step pre-
diction loss. We observe a wide range of values suitable for
γ, as shown in Fig. 7b and 7e, though a γ value of 1 is often
insufficient. As discussed at the end of Section 6, the hy-
perparameter intuitively balances the desire to match the fi-
nal state supervision and the consistency between the action
model and the trace predictions. This can be seen in Fig. 7c
and 7f, where we vary the trace length in the dataset. In gen-
eral, the performance improves with longer traces. However,
in some domains, γ becomes relatively insufficient as the
trace length increases, leading to a drop in performance.

8 Conclusion and Future Work
This paper presents ROSAME-I, an end-to-end neuro-
symbolic model that learns lifted action models from visual

traces. This learning process is guided by the given types,
predicates, action symbols, their signatures, and the ob-
jects within the planning instance. We evaluated ROSAME-I
across various domains employing different visual represen-
tations and achieved high-quality action models. In this pa-
per, we assume that the action model only has positive pre-
conditions, and the delete effects must be positive precon-
ditions. Such limitations can be easily removed by adding
more PAM cases. In the future, we will look for a more flex-
ible PAM model and a general way to enforce constraints on
impossible cases. We only perform one-step inferences on
successive states in this paper. Replacing it with multi-step
inference on future states could offer stronger regularization
and enhance the learning task. As we progress towards our
ultimate goal of learning action models from plan demon-
stration videos with minimal supervision, an intermediate
step could involve reducing the need for action labeling in
visual traces through a deep learning action classifier. To
enable fully automated learning from videos, we will also
need to develop methods for segmenting continuous video
streams into discrete states and actions, and deal with the
complexities of viewpoint, lighting and appearance changes
inherent in real scenes.

Acknowledgements
This work was supported by Australian Research Council
grant DP220103815 and by the Artificial and Natural Intelli-
gence Toulouse Institute (ANITI) under the grant agreement
ANR-19-PI3A-000.

References
Ahmed, K.; Teso, S.; Chang, K.; Van den Broeck, G.; and
Vergari, A. 2022. Semantic Probabilistic Layers for Neuro-
Symbolic Learning. In Proc. NeurIPS.
Aineto, D.; Jiménez Celorrio, S.; and Onaindia, E. 2019.
Learning action models with minimal observability. Arti-
ficial Intelligence, 275: 104–137.
Asai, M. 2019. Unsupervised Grounding of Plannable First-
Order Logic Representation from Images. In Proc. ICAPS.
Asai, M.; and Fukunaga, A. 2018. Classical Planning in
Deep Latent Space: Bridging the Subsymbolic-Symbolic
Boundary. In Proc. AAAI, 6094–6101.
Asai, M.; and Kajino, H. 2019. Towards Stable Symbol
Grounding with Zero-Suppressed State AutoEncoder. In
Proc. ICAPS, 592–600.
Asai, M.; Kajino, H.; Fukunaga, A.; and Muise, C. 2022.
Classical Planning in Deep Latent Space. JAIR, 74: 1599–
1686.
Asai, M.; and Muise, C. 2020. Learning Neural-Symbolic
Descriptive Planning Models via Cube-Space Priors: The
Voyage Home (to STRIPS). In Proc. IJCAI, 2676–2682.
Bäckström, C.; and Nebel, B. 1995. Complexity results for
SAS+ planning. Computational Intelligence, 11(4): 625–
655.
Bonet, B.; and Geffner, H. 2020. Learning First-Order Sym-
bolic Representations for Planning from the Structure of the
State Space. In Proc. ECAI, 2322–2329.
Callanan, E.; Venezia, R. D.; Armstrong, V.; Paredes, A.;
Chakraborti, T.; and Muise, C. 2022. MACQ: A Holistic
View of Model Acquisition Techniques. In ICAPS Workshop
on Knowledge Engineering for Planning & Scheduling.
Cohen, G.; Afshar, S.; Tapson, J.; and Van Schaik, A. 2017.
EMNIST: Extending MNIST to handwritten letters. In Proc.
IJCNN, 2921–2926.
Cresswell, S.; and Gregory, P. 2011. Generalised Domain
Model Acquisition from Action Traces. In Proc. ICAPS.
Cresswell, S.; McCluskey, T. L.; and West, M. M. 2009. Ac-
quisition of Object-Centred Domain Models from Planning
Examples. In Proc. ICAPS.
Cresswell, S. N.; McCluskey, T. L.; and West, M. M. 2013.
Acquiring planning domain models using LOCM. The
Knowledge Engineering Review, 28(2): 195–213.
Deng, L. 2012. The MNIST Database of Handwritten Digit
Images for Machine Learning Research. IEEE Signal Pro-
cessing Magazine, 29(6): 141–142.
Doersch, C. 2021. Tutorial on Variational Autoencoders.
arXiv:1606.05908.
Du, S. S.; Zhai, X.; Poczos, B.; and Singh, A. 2019. Gradi-
ent Descent Provably Optimizes Over-parameterized Neural
Networks. In Proc. ICLR.
Hájek, P.; Godo, L.; and Esteva, F. 1996. A complete many-
valued logic with product-conjunction. Archive for mathe-
matical logic, 35: 191–208.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In Proc. CVPR, 770–778.

Jiménez, S.; Fernández, F.; and Borrajo, D. 2008. The PELA
architecture: integrating planning and learning to improve
execution. In Proc. AAAI, 1294–1299.
Konidaris, G. D.; Kaelbling, L. P.; and Lozano-Pérez, T.
2014. Constructing Symbolic Representations for High-
Level Planning. In Proc. AAAI, 1932–1938.
Konidaris, G. D.; Kaelbling, L. P.; and Lozano-Pérez, T.
2018. From Skills to Symbols: Learning Symbolic Rep-
resentations for Abstract High-Level Planning. JAIR, 61:
215–289.
Lamanna, L.; Saetti, A.; Serafini, L.; Gerevini, A.; and
Traverso, P. 2021. Online Learning of Action Models for
PDDL Planning. In Proc. IJCAI, 4112–4118.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proc. of the IEEE, 86(11): 2278–2324.
Liberman, A. O.; Bonet, B.; and Geffner, H. 2022. Learning
First-Order Symbolic Planning Representations That Are
Grounded. CoRR, abs/2204.11902.
McCluskey, T. L.; Cresswell, S.; Richardson, N. E.; and
West, M. M. 2010. Action knowledge acquisition with op-
maker2. In Proc. ICAART, 137–150.
McCluskey, T. L.; Richardson, N. E.; and Simpson, R. M.
2002. An Interactive Method for Inducing Operator Descrip-
tions. In Proc. AIPS, 121–130.
Pasula, H. M.; Zettlemoyer, L. S.; and Kaelbling, L. P. 2007.
Learning symbolic models of stochastic domains. JAIR, 29:
309–352.
Pogancic, M. V.; Paulus, A.; Musil, V.; Martius, G.; and
Rolı́nek, M. 2020. Differentiation of Blackbox Combina-
torial Solvers. In Proc. ICLR.
Rodrigues, C.; Gérard, P.; Rouveirol, C.; and Soldano, H.
2012. Active learning of relational action models. In Proc.
ILP, 302–316.
Rodriguez, I. D.; Bonet, B.; Romero, J.; and Geffner, H.
2021. Learning First-Order Representations for Planning
from Black Box States: New Results. In Proc. KR, 539–548.
Silver, T.; and Chitnis, R. 2020. PDDLGym: Gym Environ-
ments from PDDL Problems. In ICAPS PRL Workshop.
Slaney, J.; and Thiébaux, S. 2001. Blocks World revisited.
Artificial Intelligence, 125(1): 119–153.
Wang, P.; Donti, P. L.; Wilder, B.; and Kolter, J. Z. 2019.
SATNet: Bridging deep learning and logical reasoning using
a differentiable satisfiability solver. In Proc. ICML, 6545–
6554.
Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action mod-
els from plan examples using weighted MAX-SAT. Artificial
Intelligence, 171(2-3): 107–143.
Zhuo, H. H.; and Kambhampati, S. 2013. Action-model ac-
quisition from noisy plan traces. In Proc. IJCAI, 2444–2450.
Zhuo, H. H.; Muñoz-Avila, H.; and Yang, Q. 2011. Learning
action models for multi-agent planning. In Proc. AAMAS,
217–224.
Zhuo, H. H.; Yang, Q.; Hu, D. H.; and Li, L. 2010. Learning
complex action models with quantifiers and logical implica-
tions. Artificial Intelligence, 174(18): 1540–1569.

