
Young Won Lim
11/14/24

Packages (1A)



Young Won Lim
11/14/24

 Copyright (c)  2024 - 2015  Young W. Lim.

  Permission is granted to copy, distribute and/or modify this document  under the terms of the GNU Free Documentation License, Version 1.2 or any 
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.  A copy of the 
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com


Packages 3 Young Won Lim
11/14/24

Modules and Packages 

a module in Python is a single file 
that contains Python code 
– functions, statements, variables, and classes. 

a self-contained unit of code 
can be imported and used 
in other programs or modules.

a package, is a collection of modules 
organized in a directory

can group multiple related modules together 
under a common namespace, 

https://www.sitepoint.com/python-modules-packages/



Packages 4 Young Won Lim
11/14/24

Working with Modules

modules can be imported and used 
in other programs, modules, and packages. 

can make smaller, manageable, and logical units.

improve organization, reusability, and maintainability.

https://www.sitepoint.com/python-modules-packages/



Packages 5 Young Won Lim
11/14/24

Creating a simple module

put a number of related functions, variables, and classes 
in one module, and give the module any name we want

To create a module in Python, 
open up an IDE or text editor, create a file, 
and give it a descriptive name and a .py extension. 

For this example, let’s call it sample.py 
and enter in the following code:

https://www.sitepoint.com/python-modules-packages/



Packages 6 Young Won Lim
11/14/24

Creating a simple module

# sample.py

sample_variable  = "This is a string variable in the sample.py module"

# A function in the module
def say_hello(name):
        return f"Hello, {name}  welcome to this simple module."

# This is another function in the module
def add(a, b):
        return f"The sum of {a} + {b} is = {a+b}"

print(sample_variable)
print(say_hello("aaa"))
print(add(2, 3))

https://www.sitepoint.com/python-modules-packages/



Packages 7 Young Won Lim
11/14/24

Creating a simple module

contains a variable named sample_variable 
whose value is the string 
"This is a string variable in the sample.py module". 

this module also contains two function definitions. 

the say_hello() function takes in a name parameter, 
and it returns a welcome message if we pass a name to it. 

The add() function returns the sum of two numbers 
a, b that have been passed to it.

https://www.sitepoint.com/python-modules-packages/



Packages 8 Young Won Lim
11/14/24

Creating a simple module

To run 

python sample.py 

python3 sample.py

This is a string variable in the sample.py module
Hello, aaa welcome to this simple module.
The sum of 2 + 3 is = 5

For one-off module usage, we can run it as a standalone, 
but most modules are made to be used in other modules 
or other parts of a Python program. 

So to use variables, functions, and classes 
from one module in another module 
we have to import the module. 

https://www.sitepoint.com/python-modules-packages/



Packages 9 Young Won Lim
11/14/24

Using the import statement

can use the import statement 
to make the contents of one module available 
for use in another module. 

to use the contents of sample.py in another module, 
we just import it:

# another_module.py

import sample

print(sample.sample_variable)
print(sample.say_hello(“John”))
print(sample.add(2, 3))

https://www.sitepoint.com/python-modules-packages/

# sample.py

sample_variable  = "This is a string variable in the sample.py module"

# A function in the module
def say_hello(name):
        return f"Hello, {name}  welcome to this simple module."

# This is another function in the module
def add(a, b):
        return f"The sum of {a} + {b} is = {a+b}"

print(sample_variable)
print(say_hello("aaa"))
print(add(2, 3))

sample.add(2, 3)

module sample
(sample.py)

function add

import sample

module sample
(sample.py)



Packages 10 Young Won Lim
11/14/24

Using the import statement

https://www.sitepoint.com/python-modules-packages/

shows how to import the functions from the sample.py module, 
making them available for use in the another_module.py. 

# another_module.py

import sample

print(sample.sample_variable)
print(sample.say_hello(“John”))
print(sample.add(2, 3))

when we import a module, 
we don’t include the .py extension; 

module sample
(sample.py)



Packages 11 Young Won Lim
11/14/24

Using the from statement

can also use the from keyword 
to import specific functions or variables. 

can specify the functions or variables 
we want to use, using the from keyword:

# another_module.py

from sample import add

print(add(10, 4))

https://www.sitepoint.com/python-modules-packages/

function add

add(2, 3)

function add

from sample import add

module sample
(sample.py)

specifically imported the add() function 
from the sample module.

a module has a large number of 
functions and variables defined in it 1
and we don’t want to use all of them. 



Packages 12 Young Won Lim
11/14/24

Using the from statement

Another benefit of using the from keyword is 
that we’ll run the imported function 
without namespacing it or prefixing it 
with the name of its parent module. 

Instead, we’ll use the function like we’ve 
defined it in the file where we’re using it. 

https://www.sitepoint.com/python-modules-packages/

add(2, 3)

function add



Packages 13 Young Won Lim
11/14/24

Using the as statement (1-1)

can use as to provide an alias or 
an alternate name for the module.

# another_module.py

import sample as sp

result = sp.add(5, 5)
print(result)
print(sp.say_hello("Jason"))

https://www.sitepoint.com/python-modules-packages/

result = sample.add(5, 5)
print(result)
print(sample.say_hello("Jason"))

# sample.py

sample_variable  = "This is a string variable in the sample.py module"

# A function in the module
def say_hello(name):
        return f"Hello, {name}  welcome to this simple module."

# This is another function in the module
def add(a, b):
        return f"The sum of {a} + {b} is = {a+b}"

print(sample_variable)
print(say_hello("aaa"))
print(add(2, 3))

sp.add(2, 3)

module alias sp
(sample.py)

function add

import sample as sp

module sample
(sample.py)

module alias sp
(sample.py)



Packages 14 Young Won Lim
11/14/24

Using the as statement (1-2)

This code shows an import of the sample module, 
where the module is being given an alternate name sp. 

So using sp is just the same as calling sample. 

Therefore, using the alias, 
we have access to the variables and functions, 
in the same way we could if we were using the original name.

At times, we may define module names 
that are quite long or unreadable. 

Python provides a way of giving the module imports an alternate or alias, 
which we can use to refer to them in the modules we’re importing them into. 

https://www.sitepoint.com/python-modules-packages/

sp.add(2, 3)

module alias sp
(sample.py)

function add



Packages 15 Young Won Lim
11/14/24

Three import examples

Using those three methods, we’re able to use 
the variables or functions from one module 
in another module, 
enhancing the readability of our application 
where we don’t need to put the code in one file.

import sample

from sample import add

import sample as sp

https://www.sitepoint.com/python-modules-packages/

sample.add(2, 3)

module sample
(sample.py)

function add

import sample

module sample
(sample.py)

function add

function add

from sample import add

module sample
(sample.py)

sp.add(2, 3)

module alias sp
(sample.py)

function add

import sample as sp

module sample
(sample.py)

module alias sp
(sample.py)

add(2, 3)



Packages 16 Young Won Lim
11/14/24

Naming modules

While naming our modules, it’s good practice 
to use lowercase letters and 
separate words with underscores. 

If a module name might cause a name clash 
with a Python built-in keyword or 
module from a third-party library, 
consider using a different name or 
adding a prefix that’s relevant to the project. 

remember that names are 
case-sensitive in Python

Overall, using modules lets us 
create and organize our code 
in a readable and maintainable way. 

common Python standard library modules.

https://www.sitepoint.com/python-modules-packages/



Packages 17 Young Won Lim
11/14/24

Package 

A package in Python is a way of 
organizing related modules into a directory. 

to group modules that serve a common purpose 
or are part of the same component.

when structuring larger projects or libraries. 

modules are individual files containing Python code: 
put related functions, classes, and variables within a single file. 

In contrast, packages are directories 
that contain multiple modules or subpackages. 

by grouping related modules
a higher level of organization
more structured and maintainable projects.

https://www.sitepoint.com/python-modules-packages/



Packages 18 Young Won Lim
11/14/24

Building and managing packages (1)   

While packages organize related code modules in one directory, 
just putting the modules in a directory doesn’t make it a package. 

For Python to identify a directory as a package or a subpackage, 
the directory must contain a special file named __init__.py.

This file notifies Python that the directory containing it 
should be treated as a package or a subpackage. 

This file could be empty, and most of the time it is, 
but it can also contain initialization code, 
and it plays a vital role in Python’s package structure 
and import mechanisms. 

https://www.sitepoint.com/python-modules-packages/



Packages 19 Young Won Lim
11/14/24

Building and managing packages (2)   

So using __init__.py tells Python 
that we are intentionally creating a package, 
thereby helping it differentiate between a package 
and an ordinary directory.

Packages can have a hierarchical structure, 
meaning we can create subpackages within our packages 
to further organize our code. 

This enables finer and more controlled separation 
of components and functionality. 

https://www.sitepoint.com/python-modules-packages/



Packages 20 Young Won Lim
11/14/24

Building and managing packages (3)   

Consider the following example:

my_package/
├── __init__.py
├── module1.py
└── subpackage/
  ├── __init__.py
  ├── submodule1.py
  └── submodule2.py

my_package is the main package, 
subpackage is a subpackage within my_package. 

Both directories have an __init__.py file. 

https://www.sitepoint.com/python-modules-packages/



Packages 21 Young Won Lim
11/14/24

Creating packages and sub-packages (1-1)

To create a package, 
first create a directory 
then we create an __init__.py file. 
and create our modules in the directory 
along with any subpackages.

calculator/
├── __init__.py
├── add.py
├── subtract.py
└── multiply.py

https://www.sitepoint.com/python-modules-packages/

# add.py

def add(a, b):
  """
  adds two numbers and returns the result.

  :param a: First number.
  :param b: Second number.
  :return: Sum of a and b.
  """

  return a + b

# subtract.py

def subtract(a, b):
"""

  subtracts two numbers and returns the result.

  :param a: First number.
  :param b: Second number.
  :return: Difference of a and b.
  """

  return a - b



Packages 22 Young Won Lim
11/14/24

Importing from packages - absolute import

Absolute imports are used 
to directly import modules or subpackages 
from the top-level package, 

specify the full path to the module or package 
we want to import.

importing the add module from the calculator package:

an external module calculate.py 

imports the add() function 
from the add module 

using an absolute import 
by specifying the absolute path to the function.
calculator.add

https://www.sitepoint.com/python-modules-packages/

calculator/
├── __init__.py
├── add.py
├── subtract.py
└── multiply.py

# calculate.py

from calculator.add import add

result = add(5, 9)

print(result)

from calculator.add import add

package
calculator

module add
(add.py)

function add



Packages 23 Young Won Lim
11/14/24

Importing from packages - relative import (1)

relative imports are used to import modules or packages 
relative to the current module’s position in the package hierarchy. 

relative imports are specified using dots (.) 
to indicate the level of relative positioning.

let’s create a subpackage in the calculator package, 
call the subpackage multiply, 
then move the multiply.py module into that subpackage, 

calculator/
├── __init__.py
├── add.py
├── subtract.py
└── multiply/

  ├── __init__.py
  └── multiply.py

https://www.sitepoint.com/python-modules-packages/

calculator/
├── __init__.py
├── add.py
├── subtract.py
└── multiply.py



Packages 24 Young Won Lim
11/14/24

Importing from packages - relative import (2)

use relative imports to access the multiply module 
from other modules within the calculator package 
or its subpackages. 

For instance, if we had a module 
inside the calculator package 
that needs to import the multiply module

from .multiply import multiply 

result = multiply(5, 9)
print(result)

Overall, relative imports are particularly useful 
for imports within a package and subpackage structure.

https://www.sitepoint.com/python-modules-packages/

calculator/
├── __init__.py
├── add.py
├── subtract.py
└── multiply/

  ├── __init__.py
  └── multiply.py

from .multiply import multiply 

package
multiply

module multiply
(multiply.py)



Packages 25 Young Won Lim
11/14/24

The __all__ attribute

when we want to use all modules 
from a package or subpackages, or 
all functions and variables from a module, 
so typing out all names becomes quite cumbersome. 

so we want a way to specify that 
we’re importing 

all functions and variables that a module has or 
all modules that package offers.

Python has the __all__ attribute, 
which is used in modules or packages 
to control what gets imported 
when a user uses the 
from module import * statement. 

__all__ attribute allows us to specify a list of names 
that will be considered “public” and 
will be imported when the wildcard (*) import is used.

https://www.sitepoint.com/python-modules-packages/

In a module, we can define the __all__ attribute 
to explicitly specify 
which names should be imported 
when the from module import * 
statement is used. 

this helps prevent 
unintended imports of internal names, 
providing a clear way of 
showing the functions 
that can be imported publicly and 
that are for use only inside a module.



Packages 26 Young Won Lim
11/14/24

Using the __all__ attribute in modules (1-2)

https://www.sitepoint.com/python-modules-packages/

# my_module.py

__all__ = ['public_function', 'public_variable']

def public_function():
        return "This is a public function."

def _internal_function():
        return "This is an internal function."

public_variable = "This is a public variable."
_internal_variable = "This is an internal variable."

defines a module named my_module.py, 
and with the __all__ attribute being set, 
only the public_function 
and the public_variable will be imported 
when the from my_module import * is used. 

The function and variable names 
starting with an underscore
the _internal_function 
and the _internal_variable
won’t be imported.



Packages 27 Young Won Lim
11/14/24

Using the __all__ attribute in modules (2)

If we know the absolute paths 
to the functions starting with an underscore, 
the _internal_function 
and the _internal_variable
we can still import them to our code. 

However, that goes against the convention of encapsulation, 
since the underscore (_) denotes them 
as private members of the module 
and indicates that they shouldn’t be used outside the module. 

So it’s good practice to follow Python programming conventions 
even if Python doesn’t enforce strict encapsulation.

https://www.sitepoint.com/python-modules-packages/



Packages 28 Young Won Lim
11/14/24

Using the __all__ attribute in packages (1)

The __all__ attribute can also be used in __init__.py files 
within a package or subpackage 
to control the default behavior of wildcard imports 
for submodules or subpackages. 

This can help ensure that only specific modules 
are imported when using wildcard imports on packages:

# my_package/__init__.py

__all__ = ['submodule1', 'subpackage']

from . import submodule1
from . import subpackage

https://www.sitepoint.com/python-modules-packages/



Packages 29 Young Won Lim
11/14/24

Using the __all__ attribute in packages (2)

This example shows an __init__.py file 
specifying that only submodule1 and subpackage1 
will be imported when using from my_package import *. 

Other submodules or subpackages won’t be imported by default.

As in the case of modules, we can still import the other modules 
not specified in the __all__ attribute list 
if we know their absolute paths. 

So the __all__ attribute acts as a convention 
rather than as a strict rule. 

It’s meant to communicate what can be used publicly 
from a module or a package. 

It is, however, recommended that explicit imports 
(import module_name) be used 
instead of wildcard imports (from module_name import *).

https://www.sitepoint.com/python-modules-packages/



Packages 30 Young Won Lim
11/14/24

import <module_name>

import <module_name>

this does not make the module contents 
directly accessible to the caller. 

Each module has its own private symbol table, 
which serves as the global symbol table 
for all objects defined in the module. 

So, a module creates a separate namespace.

The statement import <module_name> 
only places <module_name> in the caller’s symbol table. 

The objects that are defined in the module 
remain in the module’s private symbol table.

From the caller, objects in the module are only accessible 
when prefixed with <module_name> via dot notation, as you’ll see below.

Several comma-separated modules may be specified in a single import statement:

import <module_name>[, <module_name> ...]

https://realpython.com/lessons/import-statement/



Packages 31 Young Won Lim
11/14/24

import <module_name>

>>> import mod
>>> mod
<module 'mod' from 
'/Users/chris/ModulesAndPackages/mod.py'>

>>> a
Traceback (most recent call last):
  File "<input>", line 1, in <module>
    a
NameError: name 'a' is not defined
>>> s
Traceback (most recent call last):
  File "<input>", line 1, in <module>
    s
NameError: name 's' is not defined
>>> printy
Traceback (most recent call last):
  File "<input>", line 1, in <module>
    printy
NameError: name 'printy' is not defined

https://realpython.com/lessons/import-statement/

>>> mod.a
[100, 200, 300]
>>> mod.s
'Computers are useless. They can only give you answers.'
>>> mod.printy('Hello')
arg = Hello



Packages 32 Young Won Lim
11/14/24

from <module_name> import <name(s)> 

An alternate form of the import statement 
allows individual objects from the module 
to be imported directly into the caller’s symbol table:

from <module_name> import <name(s)>

Following execution of the above statement, 
<name(s)> can be referenced in the caller’s environment 
without the <module_name> prefix:

Because this form of import 
places the object names directly 
into the caller’s symbol table, 

any objects that already exist with the same name 
will be overwritten:

https://realpython.com/lessons/import-statement/



Packages 33 Young Won Lim
11/14/24

from <module_name> import <name> as <alt_name> 

from <module_name> import <name> as <alt_name>

It’s also possible to import individual objects 
but put them into the local symbol table with alternate names:

from <module_name> import <name> as <alt_name>[, <name> as <alt_name> …]

This makes it possible to place names 
directly into the local symbol table 
but avoid conflicts with previously existing names:

https://realpython.com/lessons/import-statement/



Packages 34 Young Won Lim
11/14/24

import <module_name> as <alt_name> 

import <module_name> as <alt_name>

You can also import an entire module 
under an alternate name:

import <module_name> as <alt_name>

Module contents can be imported from 
within a function definition. 

In that case, the import does not occur 
until the function is called:

However, Python 3 does not allow 
the indiscriminate import * syntax from 
within a function:

https://realpython.com/lessons/import-statement/



Packages 35 Young Won Lim
11/14/24

Package (1)

modules are 
files containing Python statements and definitions, 
like function and class definitions. 

to bundle multiple modules together,
create a package.

a package is 
basically a directory 
with several Python files (modules)
and a special file __init__.py 

inside of the Python path, 
every directory contains __init__.py, 
will be treated as a package by Python. 

https://python-course.eu/python-tutorial/packages.php



Packages 36 Young Won Lim
11/14/24

Submodules in a package

packages are a way of 
structuring Python’s module namespace 
by using "dotted module names". 

A.B stands for 
a submodule named B 
in a package named A. 

two different packages like P1 and P2 
can both have modules with the same name, 
let's say A, for example. 

The submodule A of the package P1 and 
the submodule A of the package P2 can be totally different.

P1.A
P2.A

A package is imported like a "normal" module. 

https://python-course.eu/python-tutorial/packages.php

P1

A.py__init__.py

P2

A.py__init__.py



Packages 37 Young Won Lim
11/14/24

Creating a package 

to create a package, we need a directory. 

the name of this directory will be 
the name of the package, 

assume we want to create "simple_package" package 

must create directory "simple_package" 
and this directory needs to contain the "__init__.py" file

this file can be empty, or
can contain valid Python code. 

this code will be executed 
when a package is imported, 

so it can be used to initialize a package, 

e.g. to make sure that 
some other modules are imported or 
some values set. 

https://python-course.eu/python-tutorial/packages.php

simple_package

__init__.py



Packages 38 Young Won Lim
11/14/24

Examples of creating a package (1)

put all of the Python files which will be the submodules 
into the directory for a package. 

create two simple files a.py and b.py 

a.py: submodule a 

def bar():
        print("Hello, function 'bar' from module 'a' calling")

b.py: submodule b 

def foo():
        print("Hello, function 'foo' from module 'b' calling")

an empty file with the name __init__.py 
inside of simple_package directory

__init__.py:

empty file

https://python-course.eu/python-tutorial/packages.php

simple_package

a.py b.py

__init__.py



Packages 39 Young Won Lim
11/14/24

Examples of creating a package (2)

import simple_package from the interactive Python shell, 

assuming that the directory simple_package is 

either in the directory from which you call the shell or 

that it is contained in the search path or 

environment variable "PYTHONPATH" (from your operating system):

https://python-course.eu/python-tutorial/packages.php

simple_package

a.py b.py

__init__.py



Packages 40 Young Won Lim
11/14/24

Examples of creating a package (3)

import simple_package
simple_package/a

---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-3-347df8a711cc> in <module>
----> 1 simple_package/a
NameError: name 'a' is not defined

simple_package/b

---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-4-e71d2904d2bd> in <module>
----> 1 simple_package/b
NameError: name 'b' is not defined

https://python-course.eu/python-tutorial/packages.php

simple_package

a.py b.py

__init__.py



Packages 41 Young Won Lim
11/14/24

Examples of creating a package (4)

the package simple_package has been loaded 
but neither the module "a" nor the module "b" has been loaded 

can't access neither "a" nor "b" 
by solely importing simple_package.

must import the modules a and b as follows

from simple_package import a, b

a.bar()
b.foo()

Hello, function 'bar' from module 'a' calling
Hello, function 'foo' from module 'b' calling

https://python-course.eu/python-tutorial/packages.php

simple_package

a.py b.py

__init__.py



Packages 42 Young Won Lim
11/14/24

Examples of creating a package (5)

to automatically load these modules. 

add the following lines to the file __init__.py:

import simple_package.a
import simple_package.b

Then 

import simple_package
simple_package.a.bar()
simple_package.b.foo()

Hello, function 'bar' from module 'a' calling
Hello, function 'foo' from module 'b' calling

https://python-course.eu/python-tutorial/packages.php

simple_package

a.py b.py

__init__.py



Packages 43 Young Won Lim
11/14/24

sound

Package Examples (1)

sound
|-- effects
|   |-- __init__.py
|   |-- echo.py
|   |-- reverse.py
|   `-- surround.py
|-- filters
|   |-- __init__.py
|   |-- equalizer.py
|   |-- karaoke.py
|   `-- vocoder.py
|-- formats
|   |-- __init__.py
|   |-- aiffread.py
|   |-- aiffwrite.py
|   |-- auread.py
|   |-- auwrite.py
|   |-- wavread.py
|   `-- wavwrite.py
`-- __init__.py 

https://python-course.eu/python-tutorial/packages.php

filters

__init__.py

equalizer.py
karaoke.py
vocoder.py

effects

__init__.py

echo.py
reverse.py
surround.py

formats

__init__.py

aiffread.py
aifwrite.py
auread.py

aurwrite.py
wavred.py
wavwrite.py

__init__.py



Packages 44 Young Won Lim
11/14/24

sound1

Package Examples sound1

https://python-course.eu/python-tutorial/packages.php

filters

__init__.py

equalizer.py
karaoke.py
vocoder.py

effects

__init__.py

echo.py
reverse.py
surround.py

formats

__init__.py

aiffread.py
aifwrite.py
auread.py

aurwrite.py
wavred.py
wavwrite.py

__init__.py

import sound1
print(sound1) … OK
print(sound1.effects) … Error

import sound1.effects
print(sound1.effects) … OK



Packages 45 Young Won Lim
11/14/24

sound2

Package Examples sound2

https://python-course.eu/python-tutorial/packages.php

filters

__init__.py

equalizer.py
karaoke.py
vocoder.py

effects

__init__.py

echo.py
reverse.py
surround.py

formats

__init__.py

aiffread.py
aifwrite.py
auread.py

aurwrite.py
wavred.py
wavwrite.py

__init__.py

import sound2
print(sound2) … OK
print(sound2.effects) … OK

import sound2.effects



Packages 46 Young Won Lim
11/14/24

sound3

Package Examples sound3

https://python-course.eu/python-tutorial/packages.php

filters

__init__.py

equalizer.py
karaoke.py
vocoder.py

effects

__init__.py

echo.py
reverse.py
surround.py

formats

__init__.py

aiffread.py
aifwrite.py
auread.py

aurwrite.py
wavred.py
wavwrite.py

__init__.py

import sound3
print(sound3) … OK
print(sound3.effects) … OK

from . import effects 



Packages 47 Young Won Lim
11/14/24

sound4

Package Examples sound4

https://python-course.eu/python-tutorial/packages.php

filters

__init__.py

equalizer.py
karaoke.py
vocoder.py

effects

__init__.py

echo.py
reverse.py
surround.py

formats

__init__.py

aiffread.py
aifwrite.py
auread.py

aurwrite.py
wavred.py
wavwrite.py

__init__.py

import sound4
print(sound4) … OK
print(sound4.effects) … OK
print(sound4.formats)… OK

from . import effects 

from .. import formats 



Packages 48 Young Won Lim
11/14/24

sound5

Package Examples sound5

https://python-course.eu/python-tutorial/packages.php

filters

__init__.py

equalizer.py
karaoke.py
vocoder.py

effects

__init__.py

echo.py
reverse.py
surround.py

formats

__init__.py

aiffread.py
aifwrite.py
auread.py

aurwrite.py
wavred.py
wavwrite.py

__init__.py

import sound5
print(sound5) … OK
print(sound5.effects) … OK
print(sound5.formats)… OK
sound5.filters.karaoke.func1()… OK 

from . import effects 

from .. import formats 

from ..filters import karaoke 



Packages 49 Young Won Lim
11/14/24

sound6

Package Examples sound6

https://python-course.eu/python-tutorial/packages.php

filters

__init__.py

equalizer.py
karaoke.py
vocoder.py

effects

__init__.py

echo.py
reverse.py
surround.py

formats

__init__.py

aiffread.py
aifwrite.py
auread.py

aurwrite.py
wavred.py
wavwrite.py

__init__.py

foobar.py     empty file

from sound6 import * 
sound6 package is getting imported!

for mod in ['foobar', 'effects', 'filters', 'formats']:
    print(mod, mod in dir())

foobar False
effects False
filters False
formats False



Packages 50 Young Won Lim
11/14/24

sound7

Package Examples sound7

https://python-course.eu/python-tutorial/packages.php

filters

__init__.py

equalizer.py
karaoke.py
vocoder.py

effects

__init__.py

echo.py
reverse.py
surround.py

formats

__init__.py

aiffread.py
aifwrite.py
auread.py

aurwrite.py
wavred.py
wavwrite.py

__init__.py

from sound7 import * 
sound7 package is getting imported!

for mod in ['foobar', 'effects', 'filters', 'formats']:
    print(mod, mod in dir())

foobar True
effects True
filters True
formats True

 __all__ =  ["effects", "filters", "formats", "foobar"]

foobar.py     empty file

sound6 package 
effects package
filters package
formats package
foobar module



Packages 51 Young Won Lim
11/14/24

sound7

Package Examples sound8

https://python-course.eu/python-tutorial/packages.php

filters

__init__.py

equalizer.py
karaoke.py
vocoder.py

effects
__init__.py

echo.py
reverse.py
surround.py

formats
__init__.py

aiffread.py
aifwrite.py
auread.py

aurwrite.py
wavred.py
wavwrite.py

__init__.py

from sound8 import *
sound8 package is getting imported!

from sound8.effects import *
xxx  package is getting imported!

from sound8.filters import *
xxx package is getting imported!

from sound8.formats import *
xxx package is getting imported!

 __all__ =  ["echo", "reverse", "surround"]

__all__ = ["aiffread", "aifwrite", "auread", 
                 "aurwrite",  "wavred", "wavwrite"]

__all__ = ["equalizer", "karaoke", "vocoder",  "__init__"]

foobar.py     empty file

 __all__ =  ["effects", "filters", "formats", "foobar"]



Packages 52 Young Won Lim
11/14/24

Package sound1 (1)

__init__.py
print("sound1 package is getting imported!")

effects/__init__.py
print("effects package is getting imported!")

effects/echo.py
def func1():
    print("Function func1 has been called!")
print("Module echo.py has been loaded!")

effects/reverse.py
def func1():
    print("Function func1 has been called!")
print("Module reverse.py has been loaded!")

effects/surround.py
def func1():
    print("Function func1 has been called!")

https://python-course.eu/python-tutorial/packages.php

formats/__init__.py
print("formats package is getting imported!")

formats/aiffread.py
def func1():
    print("Function func1 has been called!")
print("Module aiffread.py has been loaded!")

formats/aiffwrite.py
def func1():
    print("Function func1 has been called!")
print("Module aiffwrite.py has been loaded!")

formats/auread.py
def func1():
    print("Function func1 has been called!")
print("Module auread.py has been loaded!")

formats/auwrite.py
def func1():
    print("Function func1 has been called!")
print("Module auwrite.py has been loaded!")

formats/wavread.py
def func1():
    print("Function func1 has been called!")
print("Module wavread.py has been loaded!")

formats/wavwrite.py
def func1():
    print("Function func1 has been called!")
print("Module wavwrite.py has been loaded!")

filters/__init__.py
print("filters package is getting imported!")

filters/equalizer.py
def func1():
    print("Function func1 has been called!")
print("Module equalizer.py has been loaded!")

filters/karaoke.py
def func1():
    print("Function func1 has been called!")
print("Module karaoke.py has been loaded!")

filters/vocoder.py
def func1():
    print("Function func1 has been called!")
print("Module vocoder.py has been loaded!")

sound
|-- effects
|-- filters
|-- formats
|-- __init__.py

If we import the package sound1 
by using the statement import sound1, 
Only the package sound1 is imported
but none of the subpackages
will be imported 
effects, filters and formats 

because the file __init__.py 
doesn't contain any code 
for importing subpackages:

import sound1
print(sound1) … OK
print(sound1.effects) … Error



Packages 53 Young Won Lim
11/14/24

Package sound1 (2)

import sound1
print(sound1)
print(sound1.effects)

OUTPUT:

<module 'sound1' from '/data/Dropbox (Bodenseo)/
Bodenseo Team Folder/melisa/notebooks_en/
sound1/__init__.py'>
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-2-0b6d7fed3b24> in <module>
      3 print(sound1)
      4 
----> 5 print(sound1.effects)
AttributeError: module 'sound1' has no attribute 'effects'

https://python-course.eu/python-tutorial/packages.php

If you also want to use the package effects, 
you have to import it explicitly with import sound.effects:

import sound1.effects
print(sound1.effects)

<module 'sound1.effects' from '/data/Dropbox (Bodenseo)/
Bodenseo Team Folder/melisa/notebooks_en/
sound1/effects/__init__.py'>

It is possible to have the submodule importing done automatically 
when importing the sound1 module. 

We will change now to sound2 to demonstrate how to do this. 

We use the same files as in sound1, 
but we will add the code line import sound2.effects 
into the file __init__.py of the directory sound2. 

"""An empty sound package
This is the sound package, providing hardly anything!"""
import sound2.effects
print("sound2.effects package is getting imported!")
)

  print(sound1)

  print(sound1.effects)



Packages 54 Young Won Lim
11/14/24

Package sound2 

__init__.py
print("sound2 package is getting imported!")
import sound2.effects

effects/__init__.py
print("effects package is getting imported!")

effects/echo.py
def func1():
    print("Function func1 has been called!")
print("Module echo.py has been loaded!")

effects/reverse.py
def func1():
    print("Function func1 has been called!")
print("Module reverse.py has been loaded!")

effects/surround.py
def func1():
    print("Function func1 has been called!")

https://python-course.eu/python-tutorial/packages.php

formats/__init__.py
print("formats package is getting imported!")

formats/aiffread.py
def func1():
    print("Function func1 has been called!")
print("Module aiffread.py has been loaded!")

formats/aiffwrite.py
def func1():
    print("Function func1 has been called!")
print("Module aiffwrite.py has been loaded!")

formats/auread.py
def func1():
    print("Function func1 has been called!")
print("Module auread.py has been loaded!")

formats/auwrite.py
def func1():
    print("Function func1 has been called!")
print("Module auwrite.py has been loaded!")

formats/wavread.py
def func1():
    print("Function func1 has been called!")
print("Module wavread.py has been loaded!")

formats/wavwrite.py
def func1():
    print("Function func1 has been called!")
print("Module wavwrite.py has been loaded!")

filters/__init__.py
print("filters package is getting imported!")

filters/equalizer.py
def func1():
    print("Function func1 has been called!")
print("Module equalizer.py has been loaded!")

filters/karaoke.py
def func1():
    print("Function func1 has been called!")
print("Module karaoke.py has been loaded!")

filters/vocoder.py
def func1():
    print("Function func1 has been called!")
print("Module vocoder.py has been loaded!")

import sound2.effects
in __init__.py of the package sound2 

when the package sound2 is imported,
the subpackage effects will also 
be automatically loaded:

import sound2
sound2 package is getting imported!
effects package is getting imported!

sound
|-- effects
|-- filters
|-- formats
|-- __init__.py



Packages 55 Young Won Lim
11/14/24

Package sound3 

__init__.py
print("sound3 package is getting imported!")
from . import effects 

effects/__init__.py
print("effects package is getting imported!")

effects/echo.py
def func1():
    print("Function func1 has been called!")
print("Module echo.py has been loaded!")

effects/reverse.py
def func1():
    print("Function func1 has been called!")
print("Module reverse.py has been loaded!")

effects/surround.py
def func1():
    print("Function func1 has been called!")

https://python-course.eu/python-tutorial/packages.php

formats/__init__.py
print("formats package is getting imported!")

formats/aiffread.py
def func1():
    print("Function func1 has been called!")
print("Module aiffread.py has been loaded!")

formats/aiffwrite.py
def func1():
    print("Function func1 has been called!")
print("Module aiffwrite.py has been loaded!")

formats/auread.py
def func1():
    print("Function func1 has been called!")
print("Module auread.py has been loaded!")

formats/auwrite.py
def func1():
    print("Function func1 has been called!")
print("Module auwrite.py has been loaded!")

formats/wavread.py
def func1():
    print("Function func1 has been called!")
print("Module wavread.py has been loaded!")

formats/wavwrite.py
def func1():
    print("Function func1 has been called!")
print("Module wavwrite.py has been loaded!")

filters/__init__.py
print("filters package is getting imported!")

filters/equalizer.py
def func1():
    print("Function func1 has been called!")
print("Module equalizer.py has been loaded!")

filters/karaoke.py
def func1():
    print("Function func1 has been called!")
print("Module karaoke.py has been loaded!")

filters/vocoder.py
def func1():
    print("Function func1 has been called!")
print("Module vocoder.py has been loaded!")

Instead of using an absolute path we 
could have imported the effects package 
relative to the sound2 package.

import sound2.effects     # absolute path

from . import effects       # relative path

import sound3
sound3 package is getting imported!
effects package is getting imported!

sound
|-- effects
|-- filters
|-- formats
|-- __init__.py 



Packages 56 Young Won Lim
11/14/24

Package sound4 

__init__.py
print("sound4 package is getting imported!")
from . import effects 

effects/__init__.py
print("effects package is getting imported!")
from .. import formats 

effects/__init__.py
print("effects package is getting imported!")

effects/echo.py
def func1():
    print("Function func1 has been called!")
print("Module echo.py has been loaded!")

effects/reverse.py
def func1():
    print("Function func1 has been called!")
print("Module reverse.py has been loaded!")

effects/surround.py
def func1():
    print("Function func1 has been called!")

https://python-course.eu/python-tutorial/packages.php

formats/__init__.py
print("formats package is getting imported!")

formats/aiffread.py
def func1():
    print("Function func1 has been called!")
print("Module aiffread.py has been loaded!")

formats/aiffwrite.py
def func1():
    print("Function func1 has been called!")
print("Module aiffwrite.py has been loaded!")

formats/auread.py
def func1():
    print("Function func1 has been called!")
print("Module auread.py has been loaded!")

formats/auwrite.py
def func1():
    print("Function func1 has been called!")
print("Module auwrite.py has been loaded!")

formats/wavread.py
def func1():
    print("Function func1 has been called!")
print("Module wavread.py has been loaded!")

formats/wavwrite.py
def func1():
    print("Function func1 has been called!")
print("Module wavwrite.py has been loaded!")

filters/__init__.py
print("filters package is getting imported!")

filters/equalizer.py
def func1():
    print("Function func1 has been called!")
print("Module equalizer.py has been loaded!")

filters/karaoke.py
def func1():
    print("Function func1 has been called!")
print("Module karaoke.py has been loaded!")

filters/vocoder.py
def func1():
    print("Function func1 has been called!")
print("Module vocoder.py has been loaded!")

import sound4
sound4 package is getting imported!
effects package is getting imported!
formats package is getting imported!

in the __init__.py file of sound4 directory 

from . import effects

in the __init__.py file of effects directory 

from .. import formats 

sound
|-- effects
|-- filters
|-- formats
|-- __init__.py 



Packages 57 Young Won Lim
11/14/24

Package sound5 

__init__.py
print("sound5 package is getting imported!")
from . import effects 

effects/__init__.py
print("effects package is getting imported!")
from .. import formats 

effects/echo.py
def func1():
    print("Function func1 has been called!")
print("Module echo.py has been loaded!")

effects/reverse.py
def func1():
    print("Function func1 has been called!")
print("Module reverse.py has been loaded!")

effects/surround.py
def func1():
    print("Function func1 has been called!")

https://python-course.eu/python-tutorial/packages.php

formats/__init__.py
print("formats package is getting imported!")
from ..filters import karaoke 

formats/aiffread.py
def func1():
    print("Function func1 has been called!")
print("Module aiffread.py has been loaded!")

formats/aiffwrite.py
def func1():
    print("Function func1 has been called!")
print("Module aiffwrite.py has been loaded!")

formats/auread.py
def func1():
    print("Function func1 has been called!")
print("Module auread.py has been loaded!")

formats/auwrite.py
def func1():
    print("Function func1 has been called!")
print("Module auwrite.py has been loaded!")

formats/wavread.py
def func1():
    print("Function func1 has been called!")
print("Module wavread.py has been loaded!")

formats/wavwrite.py
def func1():
    print("Function func1 has been called!")
print("Module wavwrite.py has been loaded!")

filters/__init__.py
print("filters package is getting imported!")

filters/equalizer.py
def func1():
    print("Function func1 has been called!")
print("Module equalizer.py has been loaded!")

filters/karaoke.py
def func1():
    print("Function func1 has been called!")
print("Module karaoke.py has been loaded!")

filters/vocoder.py
def func1():
    print("Function func1 has been called!")
print("Module vocoder.py has been loaded!")

sound
|-- effects
|-- filters
|-- formats
|-- __init__.py 

import karaoke module 
from filters package
when we import the effects package. 

from ..filters import karaoke 
into the __init__.py file of formats directory

can access the functions of karaoke :

sound5.filters.karaoke.func1()

Function func1 has been called!



Packages 58 Young Won Lim
11/14/24

Package sound6 (1)

__init__.py
print("sound5 package is getting imported!")

foobar.py
empty file

effects/__init__.py
print("effects package is getting imported!")

effects/echo.py
def func1():
    print("Function func1 has been called!")
print("Module echo.py has been loaded!")

effects/reverse.py
def func1():
    print("Function func1 has been called!")
print("Module reverse.py has been loaded!")

effects/surround.py
def func1():
    print("Function func1 has been called!")

https://python-course.eu/python-tutorial/packages.php

formats/__init__.py
print("formats package is getting imported!")

formats/aiffread.py
def func1():
    print("Function func1 has been called!")
print("Module aiffread.py has been loaded!")

formats/aiffwrite.py
def func1():
    print("Function func1 has been called!")
print("Module aiffwrite.py has been loaded!")

formats/auread.py
def func1():
    print("Function func1 has been called!")
print("Module auread.py has been loaded!")

formats/auwrite.py
def func1():
    print("Function func1 has been called!")
print("Module auwrite.py has been loaded!")

formats/wavread.py
def func1():
    print("Function func1 has been called!")
print("Module wavread.py has been loaded!")

formats/wavwrite.py
def func1():
    print("Function func1 has been called!")
print("Module wavwrite.py has been loaded!")

filters/__init__.py
print("filters package is getting imported!")

filters/equalizer.py
def func1():
    print("Function func1 has been called!")
print("Module equalizer.py has been loaded!")

filters/karaoke.py
def func1():
    print("Function func1 has been called!")
print("Module karaoke.py has been loaded!")

filters/vocoder.py
def func1():
    print("Function func1 has been called!")
print("Module vocoder.py has been loaded!")

sound
|-- effects
|-- filters
|-- formats
|-- __init__.py
|-- foobar.py
 

from sound6 import * 
sound6 package is getting imported!

for mod in 
     ['foobar', 'effects', 'filters', 'formats']:
    print(mod, mod in dir())

foobar False
effects False
filters False
formats False



Packages 59 Young Won Lim
11/14/24

Package sound6 (2)

add a module (file) foobar (filename: foobar.py) 
to the sound directory. 

want to import all the submodules and subpackages 
of the package sound6. 

from sound6 import *

sound6 package is getting imported!

Yet, if we check with the dir function, we see that 
neither the module foobar nor the subpackages 
effects, filters and formats have been imported:

for mod in ['foobar', 'effects', 'filters', 'formats']:
    print(mod, mod in dir())

foobar False
effects False
filters False
formats False

https://python-course.eu/python-tutorial/packages.php

sound7
|-- effects
|-- filters
|-- formats
|-- __init__.py
|-- foobar.py
 



Packages 60 Young Won Lim
11/14/24

Package sound7 (1)

__init__.py
print("sound5 package is getting imported!")
 __all__ =  ["formats", "filters", "effects", 
                    "foobar"]

foobar.py
empty file

effects/__init__.py
print("effects package is getting imported!")

effects/echo.py
def func1():
    print("Function func1 has been called!")
print("Module echo.py has been loaded!")

effects/reverse.py
def func1():
    print("Function func1 has been called!")
print("Module reverse.py has been loaded!")

effects/surround.py
def func1():
    print("Function func1 has been called!")

https://python-course.eu/python-tutorial/packages.php

formats/__init__.py
print("formats package is getting imported!")

formats/aiffread.py
def func1():
    print("Function func1 has been called!")
print("Module aiffread.py has been loaded!")

formats/aiffwrite.py
def func1():
    print("Function func1 has been called!")
print("Module aiffwrite.py has been loaded!")

formats/auread.py
def func1():
    print("Function func1 has been called!")
print("Module auread.py has been loaded!")

formats/auwrite.py
def func1():
    print("Function func1 has been called!")
print("Module auwrite.py has been loaded!")

formats/wavread.py
def func1():
    print("Function func1 has been called!")
print("Module wavread.py has been loaded!")

formats/wavwrite.py
def func1():
    print("Function func1 has been called!")
print("Module wavwrite.py has been loaded!")

filters/__init__.py
print("filters package is getting imported!")

filters/equalizer.py
def func1():
    print("Function func1 has been called!")
print("Module equalizer.py has been loaded!")

filters/karaoke.py
def func1():
    print("Function func1 has been called!")
print("Module karaoke.py has been loaded!")

filters/vocoder.py
def func1():
    print("Function func1 has been called!")
print("Module vocoder.py has been loaded!")

sound7
|-- effects
|-- filters
|-- formats
|-- __init__.py
|-- foobar.py
 

from sound7 import * … OK

from sound8.effects import *  … not OK



Packages 61 Young Won Lim
11/14/24

Package sound7 (2)

explicit index for the subpackages and modules 
of a package, which should be imported. 

define a list named __all__. 
to the __init__.py file of the sound directory.

: the list of module and package names to be imported 
when from package import * is encountered.

 __all__ = ["formats", "filters", "effects", "foobar"] 

from sound7 import *

sound7 package is getting imported!
formats package is getting imported!
filters package is getting imported!
effects package is getting imported!
foobar module is getting imported

https://python-course.eu/python-tutorial/packages.php

check with dir again:

for mod in ['foobar', 'effects', 'filters', 'formats']:
    print(mod, mod in dir())

foobar True
effects True
filters True
formats True

if we use * in a subpackage effects

from sound.effects import *
sound7 package is getting imported!
effects package is getting imported!

dir()
['__builtins__', '__doc__', '__loader__', '__name__', 
'__package__', '__spec__']

Like expected the modules inside of effects 
have not been imported automatically. 

sound7
|-- effects
|-- filters
|-- formats
|-- __init__.py
|-- foobar.py
 



Packages 62 Young Won Lim
11/14/24

Package sound8 (1)

__init__.py
print("sound5 package is getting imported!")
 __all__ =  ["formats", "filters", "effects", 
                    "foobar"]

foobar.py
empty file

effects/__init__.py
print("effects package is getting imported!")
 __all__ =  ["echo", "surround", "reverse"]

effects/echo.py
def func1():
    print("Function func1 has been called!")
print("Module echo.py has been loaded!")

effects/reverse.py
def func1():
    print("Function func1 has been called!")
print("Module reverse.py has been loaded!")

effects/surround.py
def func1():
    print("Function func1 has been called!")

https://python-course.eu/python-tutorial/packages.php

formats/__init__.py
print("formats package is getting imported!")
__all__ = ["aiffread", "aiffwrite", "auread", 
                 "auwrite",  "wavread", "wavwrite"]

formats/aiffread.py
def func1():
    print("Function func1 has been called!")
print("Module aiffread.py has been loaded!")

formats/aiffwrite.py
def func1():
    print("Function func1 has been called!")
print("Module aiffwrite.py has been loaded!")

formats/auread.py
def func1():
    print("Function func1 has been called!")
print("Module auread.py has been loaded!")

formats/auwrite.py
def func1():
    print("Function func1 has been called!")
print("Module auwrite.py has been loaded!")

formats/wavread.py
def func1():
    print("Function func1 has been called!")
print("Module wavread.py has been loaded!")

formats/wavwrite.py
def func1():
    print("Function func1 has been called!")
print("Module wavwrite.py has been loaded!")

filters/__init__.py
print("filters package is getting imported!")
__all__ = ["equalizer", "__init__", "karaoke", 
                 "vocoder"]

filters/equalizer.py
def func1():
    print("Function func1 has been called!")
print("Module equalizer.py has been loaded!")

filters/karaoke.py
def func1():
    print("Function func1 has been called!")
print("Module karaoke.py has been loaded!")

filters/vocoder.py
def func1():
    print("Function func1 has been called!")
print("Module vocoder.py has been loaded!")

sound8
|-- effects
|-- filters
|-- formats
|-- __init__.py
|-- foobar.py
 

from sound8 import * … OK

from sound8.effects import *  … OK

from sound8.filters import *  … OK

from sound8.formats import *  … OK



Packages 63 Young Won Lim
11/14/24

Package sound8 (2)

https://python-course.eu/python-tutorial/packages.php

__all__ list in the  __init__ file of each sub-package

__all__ = ["equalizer", "__init__", "karaoke", "vocoder"]
__all__ = ["aiffread", "aiffwrite", "auread", "auwrite",  

       "wavread", "wavwrite"]
__all__ = ["echo", "surround", "reverse"]

from sound8 import *

sound8 package is getting imported!
formats package is getting imported!
filters package is getting imported!
effects package is getting imported!
foobar module is getting imported

from sound8.effects import *

Module echo.py has been loaded!
Module surround.py has been loaded!
Module reverse.py has been loaded!

from sound8.filters import *

Module equalizer.py has been loaded!
Module karaoke.py has been loaded!
Module vocoder.py has been loaded!

from sound8.formats import *

Module aiffread.py has been loaded!
Module aiffwrite.py has been loaded!
Module auread.py has been loaded!
Module auwrite.py has been loaded!
Module wavread.py has been loaded!
Module wavwrite.py has been loaded!

Although certain modules are designed 
to export only names that follow certain patterns 
when you use import , it is still considered bad practice. 

The recommended way is to import specific modules 
from a package instead of using *



Packages 64 Young Won Lim
11/14/24

Package sound6 (3)

https://python-course.eu/python-tutorial/packages.php


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

