
1 Young Won Lim
11/11/24

Lambda Calculus - Combinators (8A)

2 Young Won Lim
11/11/24

 Copyright (c) 2024 - 2016 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Lambda Calculus (8A) –
Combinators

3 Young Won Lim
11/11/24

In mathematics, a fixed point (fixpoint),

also known as an invariant point,

is a value that does not change under a given transformation.

Specifically, for functions,

a fixed point is an element

that is mapped to itself by the function.

Formally, c is a fixed point of a function f

if c belongs to both the domain and the codomain of f, and

f(c) = c.

https://en.wikipedia.org/wiki/Fixed_point_(mathematics)

Fix point (1)

x f(x)

c fixed point f(c) = c

Lambda Calculus (8A) –
Combinators

4 Young Won Lim
11/11/24

For example, if f is defined on the real numbers by

f(x) = x2 − 3x + 4 ,

then 2 is a fixed point of f, because f(2) = 2.

Not all functions have fixed points: for example,

f(x) = x + 1, has no fixed points,

since x is never equal to x + 1 for any real number.

In graphical terms, a fixed-point x means

the point (x, f(x)) is on the line y = x, or in other words

the graph of f has a point in common with that line.

https://en.wikipedia.org/wiki/Fixed_point_(mathematics)

Fix point (2)

Lambda Calculus (8A) –
Combinators

5 Young Won Lim
11/11/24

In logic, extensionality, or extensional equality,

refers to principles that judge objects to be equal

if they have the same external properties.

It stands in contrast to the concept of intensionality,

which is concerned with whether

the internal definitions of objects are the same.

https://en.wikipedia.org/wiki/Extensionality

Extensionality (1)

Lambda Calculus (8A) –
Combinators

6 Young Won Lim
11/11/24

Consider the two functions f and g

mapping from and to natural numbers,

defined as follows:

 To find f(n), first add 5 to n, then multiply by 2. (n + 5)*2

 To find g(n), first multiply n by 2, then add 10. 2*n + 10

These functions are extensionally equal;

given the same input, both functions always produce the same value.

But the definitions of the functions are not equal,

and in that intensional sense the functions are not the same.

https://en.wikipedia.org/wiki/Extensionality

Extensionality (2)

f f(n)n

g g(n)n

(n + 5)*2 f(n)n

2*n + 10n g(n)

extensionally equal

intensionally inequal

Lambda Calculus (8A) –
Combinators

7 Young Won Lim
11/11/24

Similarly, in natural language

there are many predicates (relations)

that are intensionally different

but are extensionally identical.

For example, suppose that a town has one person named Joe,

who is also the oldest person in the town.

Then, the two predicates "being called Joe",

and "being the oldest person in this town"

are intensionally distinct,

but extensionally equal

for the (current) population of this town.

https://en.wikipedia.org/wiki/Extensionality

Extensionality (3)

Lambda Calculus (8A) –
Combinators

8 Young Won Lim
11/11/24

Combinatory logic is a notation

to eliminate the need for quantified variables in mathematical logic.

It was introduced by Moses Schönfinke and Haskell Curry,

and has more recently been used in computer science

as a theoretical model of computation

and also as a basis for the design of

functional programming languages.

It is based on combinators

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic

without using quantified variables

theoretical model of computation

functional programming

combinators

Lambda Calculus (8A) –
Combinators

9 Young Won Lim
11/11/24

combinators were introduced by Schönfinkel in 1920

with the idea of providing an analogous way

– to build up functions

– to remove any mention of variables

– particularly in predicate logic.

A combinator is a higher-order function

that uses only function application

earlier defined combinators

to define a result from its arguments.

https://en.wikipedia.org/wiki/Combinatory_logic

Combinator

Combinators:
define a result by its argument
without free variables

Lambda Calculus (8A) –
Combinators

10 Young Won Lim
11/11/24

Combinator : A lambda expression containing no free variables.

the word is usually understood more specifically

to refer to certain combinators of special importance,

in particular the following four:

I = λx . x Identity

K = λx . λy . x Constant function

S = λx . λy . λz . x(z)(y(z)) Substitution operator

Y = λf . (λu . f(u(u))) (λu . f(u(u)))

https://www.encyclopedia.com/computing/dictionaries-thesauruses-pictures-and-press-releases/combinator

Combinator Definitions (1)

f xx

f x
x
y

Lambda Calculus (8A) –
Combinators

11 Young Won Lim
11/11/24

Informally, a tree (xy) can be thought of

as a function x applied to an argument y.

When evaluated (i.e., when the function is "applied" to the argument),

the tree "returns a value", i.e., transforms into another tree.

The "function", "argument" and the "value" are

either combinators or binary trees.

If they are binary trees,

they may be thought of as functions too, if needed.

https://en.wikipedia.org/wiki/SKI_combinator_calculus

Combinator informal description (1-1)

x x yy

x y

xy

Lambda Calculus (8A) –
Combinators

12 Young Won Lim
11/11/24

Although the most formal representation of the objects in this system

requires binary trees,

for simpler typesetting

they are often represented as parenthesized expressions,

as a shorthand for the tree they represent.

Any subtrees may be parenthesized,

but often only the right-side subtrees are parenthesized,

with left associativity implied for any unparenthesized applications.

For example, ISK means ((IS)K).

https://en.wikipedia.org/wiki/SKI_combinator_calculus

Combinator informal description (1-2)

IS K

ISK ((IS)K)

I S

I I SS

I S I S K K

Lambda Calculus (8A) –
Combinators

13 Young Won Lim
11/11/24

a tree whose left subtree is the tree KS

and whose right subtree is the tree SK

can be written as KS(SK).

If more explicitness is desired,

the implied parentheses can be included as well: ((KS)(SK)).

https://en.wikipedia.org/wiki/SKI_combinator_calculus

Combinator informal description (1-3)

KS SK

KS(SK) ((KS)(SK))

K S S K

K K SS

K S KS(SK)S K

S S KK

Lambda Calculus (8A) –
Combinators

14 Young Won Lim
11/11/24

The evaluation operation is defined as follows:

x, y, and z represent expressions

made from the functions S, K, and I, and set values:

I returns its argument:

 I x = x

https://en.wikipedia.org/wiki/SKI_combinator_calculus

I combinator

I xx

Lambda Calculus (8A) –
Combinators

15 Young Won Lim
11/11/24

The simplest example of a combinator is I, the identity combinator,

defined by

 (I x) = x for all terms x.

https://en.wikipedia.org/wiki/Combinatory_logic

Examples of Combinators (1-1)

Lambda Calculus (8A) –
Combinators

16 Young Won Lim
11/11/24

K, when applied to any argument x,

yields a one-argument constant function K x,

which, when applied to any argument y, returns x:

 K x y = x

https://en.wikipedia.org/wiki/SKI_combinator_calculus

K combinator

K x
x
y

K K xx

K x xy

K x
x
y

Lambda Calculus (8A) –
Combinators

17 Young Won Lim
11/11/24

Another simple combinator is K,

which manufactures constant functions:

(K x) is the function which, for any argument, returns x, so we say

 ((K x) y) = x for all terms x and y.

Or, following the convention for multiple application,

 (K x y) = x

https://en.wikipedia.org/wiki/Combinatory_logic

Examples of Combinators (1-2)

Lambda Calculus (8A) –
Combinators

18 Young Won Lim
11/11/24

S is a substitution operator.

takes three arguments (x y z)

returns the result of x z applied to the result of y z

the first argument (x) applied to the third (z),

which is then applied to the result

of the second argument (y) applied to the third (z).

 S x y z = x z (y z)

https://en.wikipedia.org/wiki/SKI_combinator_calculus

S combinator

S x z (y z)
x
y
z

x x zz

x z KS(SK)y z

y y z z

a function of x z with the argument y z
a function of x with the argument z
a function of y with the argument z

Lambda Calculus (8A) –
Combinators

19 Young Won Lim
11/11/24

A third combinator is S, which is a generalized version of application:

 (S x y z) = (x z (y z))

S applies x to y

after first substituting z into each of them (x and y)

x is applied to y

inside the environment z.

https://en.wikipedia.org/wiki/Combinatory_logic

Examples of Combinators (2-1)

Lambda Calculus (8A) –
Combinators

20 Young Won Lim
11/11/24

Given S and K, I itself is unnecessary,

since it can be built from the other two:

 ((S K K) x)

 = (S K K x)

 = (K x (K x))

 = x

for any term x.

https://en.wikipedia.org/wiki/Combinatory_logic

Examples of Combinators (2-2)

Lambda Calculus (8A) –
Combinators

21 Young Won Lim
11/11/24

SKSK evaluates to KK(SK) by the S-rule.

Then if we evaluate KK(SK), we get K by the K-rule.

As no further rule can be applied, the computation halts here.

For all trees x and all trees y,

SKxy will always evaluate to y in two steps, Ky(xy) = y,

so the ultimate result of evaluating SKxy

will always equal the result of evaluating y.

We say that SKx and I are "functionally equivalent" for any x

because they always yield the same result when applied to any y.

https://en.wikipedia.org/wiki/SKI_combinator_calculus

Combinator informal description (3-1)

S x y z = x z (y z) S-rule

S K S K = K K (S K)

K x y = x K-rule

K K (S K) = K

S K x y = K y (x y) = y

I y = y

Lambda Calculus (8A) –
Combinators

22 Young Won Lim
11/11/24

it can be shown that SKI calculus is not the minimum system

that can fully perform the computations of lambda calculus,

as all occurrences of I in any expression can be replaced

by (SKK) or (SKS) or (SK x) for any x,

and the resulting expression will yield the same result.

So the "I" is merely syntactic sugar.

Since I is optional, the system is also referred

as SK calculus or

SK combinator calculus.

https://en.wikipedia.org/wiki/SKI_combinator_calculus

Combinator informal description (3-2)

S K x y = K y (x y) = y

I y = y

S K K y = K y (K y) = y

I y = y

S K S y = K y (S y) = y

I y = y

Lambda Calculus (8A) –
Combinators

23 Young Won Lim
11/11/24

 Note that although ((S K K) x) = (I x) for any x,

(S K K) itself is not equal to I.

We say the terms are extensionally equal.

Extensional equality captures the mathematical notion

of the equality of functions:

that two functions are equal

if they always produce the same results for the same arguments.

https://en.wikipedia.org/wiki/Combinatory_logic

Examples of Combinators (3-1)

Lambda Calculus (8A) –
Combinators

24 Young Won Lim
11/11/24

In contrast, the terms themselves,

together with the reduction of primitive combinators,

capture the notion of intensional equality of functions:

that two functions are equal

only if they have identical implementations

up to the expansion of primitive combinators.

https://en.wikipedia.org/wiki/Combinatory_logic

Examples of Combinators (3-2)

Lambda Calculus (8A) –
Combinators

25 Young Won Lim
11/11/24

There are many ways to implement an identity function;

(S K K) and I are among these ways.

(S K S) is yet another.

We will use the word equivalent to indicate extensional equality,

reserving equal for identical combinatorial terms.

https://en.wikipedia.org/wiki/Combinatory_logic

Examples of Combinators (3-3)

Lambda Calculus (8A) –
Combinators

26 Young Won Lim
11/11/24

A more interesting combinator is

the fixed point combinator or Y combinator,

which can be used to implement recursion.

https://en.wikipedia.org/wiki/Combinatory_logic

Examples of Combinators (4)

Lambda Calculus (8A) –
Combinators

27 Young Won Lim
11/11/24

The combinators I, K, and S were introduced by Schönfinkel and Curry,

who showed that any λ-expression can essentially be formed

by combining them.

More recently combinators have been applied

to the design of implementations for functional languages.

In particular Y (also called the paradoxical combinator)

can be seen as producing fixed points, since Y(f) reduces to f(Y(f)).

https://www.encyclopedia.com/computing/dictionaries-thesauruses-pictures-and-press-releases/combinator

Combinator Definitions (2)

I = λx . x

K = λx . λy . x

S = λx . λy . λz . x(z)(y(z))

Y = λf . (λu . f(u(u))) (λu . f(u(u)))

Lambda Calculus (8A) –
Combinators

28 Young Won Lim
11/11/24

Lambda calculus is concerned with objects called lambda-terms,

which can be represented by the following three forms of strings:

 v

 λv. E
1

 (E
1
 E

2
)

where v is a variable name drawn

from a predefined infinite set of variable names,

and E
1
 and E

2
 are lambda-terms.

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (1)

Lambda Calculus (8A) –
Combinators

29 Young Won Lim
11/11/24

 Terms of the form λv. E
1
 are called abstractions.

The variable v is called the formal parameter of the abstraction,

and E
1
 is the body of the abstraction.

The term λv. E
1
 represents the function

applied to an argument,

binds the formal parameter v to the argument

computes the resulting value of E
1

returns E
1
, with every occurrence of v replaced by the argument.

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (2)

 v

 λv. E
1

 (E
1
 E

2
)

Lambda Calculus (8A) –
Combinators

30 Young Won Lim
11/11/24

Terms of the form (E
1
 E

2
) are called applications.

applications model function invocation or execution:

the function represented by E
1
 is to be invoked,

with E
2
 as its argument, and the result is computed.

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (3-1)

Lambda Calculus (8A) –
Combinators

31 Young Won Lim
11/11/24

If E
1
 (the applicand) is an abstraction, the term may be reduced:

E
2
, the argument, may be substituted into the body of E

1

in place of the formal parameter v of E
1
,

and the result is a new lambda term which is equivalent to the old one.

If a lambda term contains no subterms of the form ((λv. E
1
) E

2
)

then it cannot be reduced, and is said to be in normal form.

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (3-2)

Lambda Calculus (8A) –
Combinators

32 Young Won Lim
11/11/24

The motivation for this definition of reduction is

that it captures the essential behavior of all mathematical functions.

For example, consider the function

that computes the square of a number. We might write

 The square of x is x * x (using * to indicate multiplication.)

x here is the formal parameter of the function.

To evaluate the square for a particular argument, say 3,

we insert it into the definition in place of the formal parameter:

 The square of 3 is 3 * 3

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (4)

Lambda Calculus (8A) –
Combinators

33 Young Won Lim
11/11/24

To evaluate the resulting expression 3 * 3, we would have to resort

to our knowledge of multiplication and the number 3.

Since any computation is simply a composition of

the evaluation of suitable functions

on suitable primitive arguments,

this simple substitution principle suffices

to capture the essential mechanism of computation.

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (5)

Lambda Calculus (8A) –
Combinators

34 Young Won Lim
11/11/24

Moreover, in lambda calculus, notions such as '3' and '*'

can be represented without any need for externally defined

primitive operators or constants.

It is possible to identify terms in lambda calculus,

which, when suitably interpreted, behave like the number 3

and like the multiplication operator *, q.v. Church encoding.

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (6)

Lambda Calculus (8A) –
Combinators

35 Young Won Lim
11/11/24

Lambda calculus is known to be computationally equivalent

in power to many other plausible models for computation

(including Turing machines);

that is, any calculation that can be accomplished

in any of these other models can be expressed in lambda calculus,

and vice versa.

According to the Church-Turing thesis,

both models can express any possible computation.

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (7)

Lambda Calculus (8A) –
Combinators

36 Young Won Lim
11/11/24

lambda-calculus can represent any conceivable computation

using only the simple notions

of function abstraction and application

based on simple textual substitution of terms for variables.

abstraction is not even required.

Combinatory logic is

a model of computation equivalent to lambda calculus,

but without abstraction.

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (8-1)

Lambda Calculus (8A) –
Combinators

37 Young Won Lim
11/11/24

Combinatory logic is

a model of computation equivalent to lambda calculus,

but without abstraction.

The advantage of this is that

evaluating expressions in lambda calculus is quite complicated

because the semantics of substitution must be specified

with great care to avoid variable capture problems.

evaluating expressions in combinatory logic is much simpler,

because there is no notion of substitution.

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (8-2)

Lambda Calculus (8A) –
Combinators

38 Young Won Lim
11/11/24

abstraction is the only way to manufacture functions

in the lambda calculus

Instead of abstraction,

combinatory calculus provides a limited set of primitive functions

out of which other functions may be built.

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Calculus

Lambda Calculus (8A) –
Combinators

39 Young Won Lim
11/11/24

A combinatory term has one of the following forms:

Syntax Name Description

x Variable A character or string representing a combinatory term.

P Primitive function One of the combinator symbols I, K, S.

(M N) Application Applying a function to an argument. M and N are combinatory terms.

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Terms (1)

Lambda Calculus (8A) –
Combinators

40 Young Won Lim
11/11/24

The primitive functions are combinators, or functions that,

when seen as lambda terms, contain no free variables.

To shorten the notations, a general convention is that (E
1
 E

2
 E

3
 . . . E

n
),

or even E
1
 E

2
 E

3
 . . . E

n
, denotes the term (. . . ((E

1
 E

2
) E

3
) . . . E

n
) .

This is the same general convention (left-associativity)

as for multiple application in lambda calculus.

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Terms (2)

Lambda Calculus (8A) –
Combinators

41 Young Won Lim
11/11/24

In combinatory logic, each primitive combinator comes

with a reduction rule of the form

 (P x
1
 ... x

n
) = E

where E is a term mentioning only variables from the set {x
1
 ... x

n
}.

It is in this way that primitive combinators behave as functions.

https://en.wikipedia.org/wiki/Combinatory_logic

Reductions in Combinatory Logic

Lambda Calculus (8A) –
Combinators

42 Young Won Lim
11/11/24

a fixed-point combinator

(or fixpoint combinator),

denoted fix, is a higher-order function

which takes a function f as argument

that returns some fixed point (fix f)

(a value that is mapped to itself)

of its argument function f, if one exists.

 fix f = f (fix f),

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (1-1)

fix fix ff fix

fix fix fffix f

Lambda Calculus (8A) –
Combinators

43 Young Won Lim
11/11/24

some fixed point (fix f) of its argument function f, if one exists.

Formally, if the function f has one or more fixed points, then

 fix f = f (fix f),

and hence, by repeated application,

 fix f = f (f (… f (fix f) …))

 fix f fixed point

 fix fixed point combinator

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (1-2)

fix fix ff fix

fix fix fffix f

fixff (fix f) f (fix f)

Y = (λf. (λx.f (x x)) (λx. f (x x)))

Y g = g (Y g)

fixff (f (fix f)) f (f (fix f))

Lambda Calculus (8A) –
Combinators

44 Young Won Lim
11/11/24

Every recursively defined function can be seen

as a fixed point of some suitably defined function

closing over the recursive call with an extra argument,

and therefore, using Y, every recursively defined function

can be expressed as a lambda expression.

In particular, we can now cleanly define

the subtraction, multiplication and comparison predicate

of natural numbers recursively.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Fix-point combinator (1111)

Y = λf. (λx.f (x x)) (λx. f (x x))

Y g = g (Y g)

Lambda Calculus (8A) –
Combinators

45 Young Won Lim
11/11/24

In the classical untyped lambda calculus,

every function has a fixed point.

A particular implementation of fix is

Curry's paradoxical combinator Y, represented by

 Y = λf. (λx. f (x x)) (λx. f (x x))

In functional programming, the Y combinator can be used

to formally define recursive functions in a programming language

that does not support recursion.

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (3-1)

Lambda Calculus (8A) –
Combinators

46 Young Won Lim
11/11/24

 Y = λf. (λx. f (x x)) (λx. f (x x))

Y is a function that takes one argument f and

returns the entire expression following the first period;

(λx. f (x x)) (λx. f (x x))

the expression (λx. f (x x)) denotes a function

that takes one argument x, thought of as a function,

and returns the expression f (x x),

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (3-1)

x x xx

argument function function application

Lambda Calculus (8A) –
Combinators

47 Young Won Lim
11/11/24

 Y = λf. (λx. f (x x)) (λx. f (x x))

the expression (λx. f (x x)) denotes a function

that takes one argument x,

which is thought of as a function,

and returns the expression f (x x),

where (x x) denotes

a function x applied to itself as an argument.

Juxtaposition of expressions denotes function application,

is left-associative, and has higher precedence than the period.)

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (3-1)

f f (x x)(x x)

x x xx

(λx. f (x x))

Lambda Calculus (8A) –
Combinators

48 Young Won Lim
11/11/24

 Y = λf. (λx. f (x x)) (λx. f (x x))

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (3-1)

f f (x x)(x x)

x x xx

(λx. f (x x))

f f (x x)(x x)

x x xx

(λx. f (x x))

Lambda Calculus (8A) –
Combinators

49 Young Won Lim
11/11/24

The following calculation verifies that Y g is indeed a fixed point of the function g :

 Y g = (λf. (λx.f (x x)) (λx. f (x x))) g by the definition of Y

 = (λx. g (x x)) (λx. g (x x)) by β-reduction: replacing the formal argument f of Y

with the actual argument g

 = g ((λx. g (x x)) (λx. g (x x))) by β-reduction: replacing the formal argument x of

the first function with the actual argument (λx. g (x x))

 = g (Y g) by second equality, above

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (3-2)

Lambda Calculus (8A) –
Combinators

50 Young Won Lim
11/11/24

The following calculation verifies that Y g is indeed a fixed point of the function g :

 Y g = (λf. (λx.f (x x)) (λx. f (x x))) g by the definition of Y

 = g (Y g) by second equality, above

The lambda term g (Y g) may not,

in general, β-reduce to the term (Y g) .

However, both terms β-reduce to the same term, as shown.

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (3-3)

x f(x)

c fixed point f(c) = c

Y g

Y g fixed point

g (Y g)

g (Y g) = Y g

Lambda Calculus (8A) –
Combinators

51 Young Won Lim
11/11/24

This combinator may be used in implementing Curry's paradox.

The heart of Curry's paradox is

that untyped lambda calculus is unsound as a deductive system,

and the Y combinator demonstrates this

by allowing an anonymous expression

to represent zero, or even many values.

This is inconsistent in mathematical logic.

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (3-2)

Lambda Calculus (8A) –
Combinators

52 Young Won Lim
11/11/24

Applied to a function with one variable,

the Y combinator usually does not terminate.

More interesting results are obtained

by applying the Y combinator to functions of two or more variables.

the additional variables may be used as a counter, or index.

the resulting function behaves like a while or a for loop

in an imperative language.

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (3-3)

Y = (λf. (λx.f (x x)) (λx. f (x x)))

Y g = g (Y g)

Lambda Calculus (8A) –
Combinators

53 Young Won Lim
11/11/24

Used in this way, the Y combinator implements simple recursion.

The lambda calculus does not allow

a function to appear as a term in its own definition

as is possible in many programming languages,

but a function can be passed as an argument

to a higher-order function that applies it in a recursive manner.

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (3-3)

Y = (λf. (λx.f (x x)) (λx. f (x x)))

Y g = g (Y g)

Lambda Calculus (8A) –
Combinators

54 Young Won Lim
11/11/24

The factorial function provides a good example of

how a fixed-point combinator may be used

to define recursive functions.

The standard recursive definition of the factorial function

in mathematics can be written as

 fact n = 1 if n = 0

n fact (n-1) otherwise.

where n is a non-negative integer.

https://en.wikipedia.org/wiki/Fixed-point_combinator

The factorial function (1)

Lambda Calculus (8A) –
Combinators

55 Young Won Lim
11/11/24

If we want to implement this in lambda calculus,

- integers are represented using Church encoding,

the problem is that the lambda calculus

does not allow the name of a function ('fact')

to be used in the function's definition.

this problem can be circumvented

using a fixed-point combinator fix as follows.

 fix f = f (fix f)

 fix F = F (fix F),

https://en.wikipedia.org/wiki/Fixed-point_combinator

The factorial function (2)

 fix f = f (fix f),

 fix f fixed point

 fix fixed point combinator

Lambda Calculus (8A) –
Combinators

56 Young Won Lim
11/11/24

using a fixed-point combinator fix as follows.

 fix f = f (fix f)

 fix F = F (fix F),

Let the fixed point (fix F) of F as fact

 fact ≡ fix F

 (fix F) = F (fix F)

 (fact) = F (fact) fixed-point fact

 (fact n) = F (fact n)

https://en.wikipedia.org/wiki/Fixed-point_combinator

The factorial function (3-1)

fix F = F (fix F),

fix F fixed point

fix fixed point combinator

fact n = F fact n

 = (IsZero n) 1

(multiply n (fact (pred n)))

Lambda Calculus (8A) –
Combinators

57 Young Won Lim
11/11/24

a fixed-point combinator fix

 fix F = F (fix F),

the fixed point (fix F) of F as fact

 (fact n) = F (fact n)

define a function F of two arguments f and n:

 F f n = (IsZero n) 1 (multiply n (f (pred n)))

 F fact n = (IsZero n) 1 (multiply n (fact (pred n)))

https://en.wikipedia.org/wiki/Fixed-point_combinator

The factorial function (3-2)

fix F = F (fix F),

fix F fixed point

fix fixed point combinator

fact n = F fact n

 = (IsZero n) 1

(multiply n (fact (pred n)))

Lambda Calculus (8A) –
Combinators

58 Young Won Lim
11/11/24

 (fact n) = F (fact n)

 F f n = (IsZero n) 1 (multiply n (f (pred n)))

 F fact n = (IsZero n) 1 (multiply n (fact (pred n)))

 fact n = F fact n

 = (IsZero n) 1 (multiply n (fact (pred n)))

 n * fact (n-1)

https://en.wikipedia.org/wiki/Fixed-point_combinator

The factorial function (4)

fix F = F (fix F),

fix F fixed point

fix fixed point combinator

fact n = F fact n

 = (IsZero n) 1

(multiply n (fact (pred n)))

Lambda Calculus (8A) –
Combinators

59 Young Won Lim
11/11/24

 fact n = F fact n

 = (IsZero n) 1 (multiply n (fact (pred n)))

 here (IsZero n) is a function

that takes two arguments 1 (multiply n (fact (pred n)))

and returns

its first argument 1 if n=0,

otherwise its second argument (multiply n (f (pred n)))

pred n evaluates to n-1

https://en.wikipedia.org/wiki/Fixed-point_combinator

The factorial function (5)

fact n = 1 if n = 0

n fact (n-1) otherwise.

Lambda Calculus (8A) –
Combinators

60 Young Won Lim
11/11/24

recursion:

the definition of a function using the function itself.

A function definition containing itself inside itself, by value,

leads to the whole value being of infinite size.

Other notations which support recursion natively overcome this

by referring to the function definition by name.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (1-1)

Lambda Calculus (8A) –
Combinators

61 Young Won Lim
11/11/24

Lambda calculus cannot express this:

all functions are anonymous in lambda calculus,

so we can't refer by name to a value which is yet to be defined,

inside the lambda term defining that same value.

however, a lambda expression can receive itself

as its own argument, for example in  (λx.x x) E.

Here E should be an abstraction,

applying its parameter to a value to express recursion.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (1-2)

x x xx

a function receives itself

as its own argument

Lambda Calculus (8A) –
Combinators

62 Young Won Lim
11/11/24

Consider the factorial function F(n) recursively defined by

 F(n) = 1, if n = 0; else n * F(n-1).

In the lambda expression which is to represent the function F(n),

a parameter (typically the first one) will be assumed

to receive the lambda expression itself as its value,

so that calling it - applying it to an argument

will amount to recursion.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (1-3)

Lambda Calculus (8A) –
Combinators

63 Young Won Lim
11/11/24

Thus to achieve recursion,

the intended-as-self-referencing argument

(called r here) must always be passed to itself r r

within the function body, at a call point: r r (n−1)

 G := λr. λn. (1, if n = 0; else n × (r r (n−1)))

with  r r x = F x = G r x  to hold,

so  r = G  and

 F := G G = (λx.x x) G

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (2-1)

 fix F = F (fix F)

 fix F fixed point fact

 fix fixed point combinator

r r x =

 F x =

G r x

r r x =

 F x =

G G x

r = G

F = G G = r r

Lambda Calculus (8A) –
Combinators

64 Young Won Lim
11/11/24

G is a recursive factorial function

 G := λr. λn. (1, if n = 0; else n × (r r (n−1)))

G must have two arguments r x G r x

in the body of G, self-referencing argument r

must always be passed to r, for recursion r r x

F is the top level function with a single argument x F x

with  G r x = r r x = F x to hold r = G

 F := G G = (λx.x x) G

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (2-1) – self-referencing argument

G r x =

r r x =

 F x

G G x =

r r x =

 F x

r = G

F = G G = r r

Lambda Calculus (8A) –
Combinators

65 Young Won Lim
11/11/24

The self-application achieves replication here,

passing the function's lambda expression

on to the next invocation as an argument value,

making it available to be referenced and called there.

 G := λr. λn. (1, if n = 0; else n × (r r (n−1)))

 with  r r x = F x = G r x  to hold, so  r = G

This solves it but requires re-writing

each recursive call as self-application.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (3-1)

Lambda Calculus (8A) –
Combinators

66 Young Won Lim
11/11/24

 G := λr. λn. (1, if n = 0; else n × (r r (n−1)))

 with  r r x = F x = G r x  to hold, so  r = G

We would like to have a generic solution,

without a need for any re-writes:

 G := λr. λn. (1, if n = 0; else n × (r (n−1)))

 with  r x = F x = G r x to hold, so  r = G r =: FIX G  and

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (3-2)

r r x =

 F x =

G r x

r r x =

 F x =

G G x

r = G

F = G G = r r

 r x =

 F x =

G r x

 r x =

 F x =

G r x

r = G r

F = G r = r

Lambda Calculus (8A) –
Combinators

67 Young Won Lim
11/11/24

G is a recursive factorial function

 G := λr. λn. (1, if n = 0; else n × (r (n−1)))

G must have two argument r x G r x

in the body of G, r x

with  r x = F x = G r x  to hold r = G r

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (2-1)

 r x =

 F x =

G r x

G r x =

 F x =

G r x

r = G r

F = G G = r r

Lambda Calculus (8A) –
Combinators

68 Young Won Lim
11/11/24

 G := λr. λn. (1, if n = 0; else n × (r (n−1)))

 with  r x = F x = G r x to hold, so  r = G r =: FIX G  and

 (FIX G) = G (FIX G) (FIX g) = G (FIX g)

r = G r r = g r

F = G F

 F := FIX G  where  FIX g := (r where r = g r) = g (FIX g)

 FIX G = G (FIX G) = (λn. (1, if n = 0; else n × ((FIX G) (n−1))))

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (3-3)

 r x =

 F x =

G r x

 r x =

 F x =

G r x

r = G r

F = G r = r

 fix F = F (fix F)

 fix F fixed point fact

 fix fixed point combinator

Lambda Calculus (8A) –
Combinators

69 Young Won Lim
11/11/24

 FIX G = G (FIX G) = (λn. (1, if n = 0; else n × ((FIX G) (n−1))))

Given a lambda term with first argument

representing recursive call (e.g. G here),

the fixed-point combinator FIX will return

a self-replicating lambda expression

representing the recursive function (here, F).

The function does not need to be

explicitly passed to itself at any point,

for the self-replication is arranged in advance,

when it is created, to be done each time it is called.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (4)

 FIX F = F (FIX F),

 FIX F fixed point

 FIX fixed point combinator

 FIX F = F (FIX F) = fact

 (fact) = F (fact)

 (fact n) = F (fact n)

 F f n = (IsZero n) 1

(multiply n (f (pred n)))

Lambda Calculus (8A) –
Combinators

70 Young Won Lim
11/11/24

Thus the original lambda expression (FIX G) is

re-created inside itself, at call-point, achieving self-reference.

In fact, there are many possible definitions for this FIX operator,

the simplest of them being:

 Y := λg.(λx.g (x x)) (λx.g (x x))

 Y g = (λx.g (x x)) (λx.g (x x))

 = g (λx. (x x)) (λx.g (x x))

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (5)

Lambda Calculus (8A) –
Combinators

71 Young Won Lim
11/11/24

In the lambda calculus, Y g  is a fixed-point of g, as it expands to:

 Y g

 (λh.(λx.h (x x)) (λx.h (x x))) g

 (λx.g (x x)) (λx.g (x x))

 g ((λx.g (x x)) (λx.g (x x)))

 g (Y g)

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (6)

Lambda Calculus (8A) –
Combinators

72 Young Won Lim
11/11/24

Now, to perform our recursive call to the factorial function,

we would simply call (Y G) n, where n is the number

we are calculating the factorial of.

Given n = 4, for example, this gives:

 (Y G) 4

 G (Y G) 4

 (λr.λn.(1, if n = 0; else n × (r (n−1)))) (Y G) 4

 (λn.(1, if n = 0; else n × ((Y G) (n−1)))) 4

 1, if 4 = 0; else 4 × ((Y G) (4−1))

 4 × (G (Y G) (4−1))

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (7)

Lambda Calculus (8A) –
Combinators

73 Young Won Lim
11/11/24

 4 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (4−1))

 4 × (1, if 3 = 0; else 3 × ((Y G) (3−1)))

 4 × (3 × (G (Y G) (3−1)))

 4 × (3 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (3−1)))

 4 × (3 × (1, if 2 = 0; else 2 × ((Y G) (2−1))))

 4 × (3 × (2 × (G (Y G) (2−1))))

 4 × (3 × (2 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (2−1))))

 4 × (3 × (2 × (1, if 1 = 0; else 1 × ((Y G) (1−1)))))

 4 × (3 × (2 × (1 × (G (Y G) (1−1)))))

 4 × (3 × (2 × (1 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (1−1)))))

 4 × (3 × (2 × (1 × (1, if 0 = 0; else 0 × ((Y G) (0−1))))))

 4 × (3 × (2 × (1 × (1))))

 24

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (8)

Lambda Calculus (8A) –
Combinators

74 Young Won Lim
11/11/24

Every recursively defined function can be seen

as a fixed point of some suitably defined function

closing over the recursive call with an extra argument,

and therefore, using Y, every recursively defined function

can be expressed as a lambda expression.

In particular, we can now cleanly define the subtraction, multiplication

and comparison predicate of natural numbers recursively.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (9)

Lambda Calculus (8A) –
Combinators

75 Young Won Lim
11/11/24

Every recursively defined function can be seen

as a fixed point of some suitably defined function

closing over the recursive call with an extra argument,

and therefore, using Y, every recursively defined function

can be expressed as a lambda expression.

In particular, we can now cleanly define

the subtraction, multiplication and comparison predicate

of natural numbers recursively.

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (4)

Lambda Calculus (8A) –
Combinators

76 Young Won Lim
11/11/24

Applied to a function with one variable,

the Y combinator usually does not terminate.

More interesting results are obtained

by applying the Y combinator to functions of two or more variables.

The additional variables may be used as a counter, or index.

The resulting function behaves like a while or a for loop

in an imperative language.

Used in this way, the Y combinator implements simple recursion.

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (5)

Lambda Calculus (8A) –
Combinators

77 Young Won Lim
11/11/24

In the lambda calculus, it is not possible

to refer to the definition of a function

inside its own body by name.

Recursion though may be achieved

by obtaining the same function passed in as an argument,

and then using that argument to make the recursive call,

instead of using the function's own name,

as is done in languages which do support recursion natively.

The Y combinator demonstrates this style of programming.

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (6)

Lambda Calculus (8A) –
Combinators

78 Young Won Lim
11/11/24

An example implementation of Y combinator in two languages is

presented below.

Y Combinator in Python

Y=lambda f: (lambda x: f(x(x)))(lambda x: f(x(x)))

Y(Y)

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (7)

Lambda Calculus (8A) –
Combinators

79 Young Won Lim
11/11/24

It is possible to define a complete system

using only one (improper) combinator.

An example is Chris Barker's iota combinator,

which can be expressed in terms of S and K as follows:

 ιx = xSK

https://en.wikipedia.org/wiki/SKI_combinator_calculus

Iota combinator (1)

Lambda Calculus (8A) –
Combinators

80 Young Won Lim
11/11/24

It is possible to reconstruct S, K, and I from the iota combinator.

Applying ι to itself gives ιι = ιSK = SSKK = SK(KK)

which is functionally equivalent to I.

ιx = xSK

ιι = ιSK

ιS = SSK

ιι = (ιS)K = (SSK)K = SK(KK)

ιι y = ιSKy = SK(KK)y = Ky (KK)y = y ιι = I

https://en.wikipedia.org/wiki/SKI_combinator_calculus

Iota combinator (2)

ιx = xSK

ιι = ιSK and ιS = SSK

(ιS)K = (SSK)K

SSKK= SK KK

SKKK = KK KK = K

K K (KK) = K

ιι y = ιSKy = SK(KK)y = Ky (KK)y = y

S K x y = K y (x y) = y

I y = y

Lambda Calculus (8A) –
Combinators

81 Young Won Lim
11/11/24

K can be constructed by applying ι twice to I (= ιι)

(which is equivalent to application of ι to itself):

ι(ι(ιι)) = ι(ιιSK) = ι(ISK) = ι(SK) = SKSK = K.

ι(ι(ιι)) = ι(ιιSK)

= ι(ISK) ιι = I

= ι(SK)

= (SK)SK

= K K SK

= K

https://en.wikipedia.org/wiki/SKI_combinator_calculus

Iota combinator (3)

ιx = xSK

ιι = ιSK

ιS = SSK

ιι = (ιS)K = (SSK)K = SK(KK)

ιι = ι(SK) = (SK)SK = K K SK = K

Lambda Calculus (8A) –
Combinators

82 Young Won Lim
11/11/24

K can be constructed by applying ι twice to I (= ιι)

(which is equivalent to application of ι to itself):

ι(ι(ιι)) = ι(ιιSK) = ι(ISK) = ι(SK) = SKSK = K.

Applying ι one more time to ι(ι(ιι)) gives

ι(ι(ι(ιι))) = ιK = KSK = S

https://en.wikipedia.org/wiki/SKI_combinator_calculus

Iota combinator (4)

ιx = xSK

ιι = ιSK

ιS = SSK

ιι = (ιS)K = (SSK)K = SK(KK)

ι(ι(ιι)) = ι(ιιSK)

= ι(ISK)

= ι(SK)

= (SK)SK

ιx = xSK

ιι = I

ιιι = K

ιιιι = S

Lambda Calculus (8A) –
Combinators

83 Young Won Lim
11/11/24

Improper combinators, meaning that they are expressed

in terms of other combinators rather than pure abstractions.

To be precise: in lambda calculus a proper combinator is

an expression of the form (λ.x
1
x

2
…P(x

1
,x

2
,…)),

where P(x
1
,x

2
,…) only has x

1
, x

2
 etc. as free variables,

and does not contain any abstractions.

So for example, (λxyz.x(zz)) is a proper combinator,

but (λx.x(λy.y)) is not, because it contains x applied to a lambda term.

https://cs.stackexchange.com/questions/57507/basis-sets-for-combinator-calculus

Improper Combinator

Lambda Calculus (8A) –
Combinators

84 Young Won Lim
11/11/24

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84

