
Link 3B. Shared Libraries

Young W. Lim

2024-11-13 Wed

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 1 / 54

Outline

1 Based on

2 Shared libraries Overview
Including libraries in an executable
Shared library background
Specifying linker option using -W,option

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 2 / 54

Based on

"Study of ELF loading and relocs", 1999
http://netwinder.osuosl.org/users/p/patb/public_html/elf_

relocs.html

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This �le is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the �le under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 3 / 54

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html
http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Compling 32-bit program on 64-bit gcc

gcc -v

gcc -m32 t.c

sudo apt-get install gcc-multilib

sudo apt-get install g++-multilib

gcc-multilib

g++-multilib

gcc -m32

objdump -m i386

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 4 / 54

Code sharing (1)

the operating system code is considered
read only, and separated from data.

if programs can not modify code
and have large amounts of common code,
instead of having multiple copies

of common code for each executable
it would be better to share a single copy

between many executables.

https://bottomupcs.sourceforge.net/csbu/c3673.htm

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 5 / 54

Code sharing (2)

With virtual memory this can be easily done.

The physical pages of memory,
which the library code is loaded into,
can be easily referenced
by any number of virtual pages
in any number of address spaces (process ID)

only have a single physical copy
of the library code in system memory

every process can have access to that library code
at any virtual address it likes.

https://bottomupcs.sourceforge.net/csbu/c3673.htm

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 6 / 54

Code sharing (3)

sharing a library :
a single copy of a library code loaded in the memory
is shared by multiple executables

each executable contains only a reference to a library

https://bottomupcs.sourceforge.net/csbu/c3673.htm

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 7 / 54

Code sharing (4)

when the program is loaded for execution, it is up to the system

to check if some other program has already loaded
the library code foo into memory,

if so, share it by mapping pages into the executable
for the physical memory where the library foo has been loaded

otherwise load the library foo into memory for the executable

https://bottomupcs.sourceforge.net/csbu/c3673.htm

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 8 / 54

Code sharing (5)

This process is called dynamic linking
because it does part of the linking process "on the �y"

as programs are executed in the system.

sharing the library code (already loaded by another executable)

loading the library code (never been loaded)

https://bottomupcs.sourceforge.net/csbu/c3673.htm

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 9 / 54

Compilation (1)

when you compile your program
that uses a dynamic library,

object �les contains only
references to the library functions
just as for any other external reference.

need to include the header for the library functions
to inform the compiler about the function prototype

the speci�c types of the functions you are calling.

https://bottomupcs.sourceforge.net/csbu/c3673.htm

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 10 / 54

Compilation (2)

the compiler only needs to know
the types associated with a function

the prototype of a function
such as, it takes an int and returns a char *

so that it can correctly allocate space
for the function call.

the stack frame for the function call

https://bottomupcs.sourceforge.net/csbu/c3673.htm

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 11 / 54

Linking (1)

the traditional linker still has a role to play in
creating the executable.

the traditional linker records references to the library functions
in the executable

the dynamic section of the executable requires
a NEEDED entry for each shared library
that the executable depends on.

the dynamic linker can determine which shared libraries will satisfy
the dependencies at runtime

https://bottomupcs.sourceforge.net/csbu/c3673.htm

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 12 / 54

Linking (2)

can inspect NEEDED �elds with the readelf command

Specifying Dynamic Libraries
$ readelf --dynamic /bin/ls

Dynamic segment at offset 0x22f78 contains 27 entries:

Tag Type Name/Value

0x0000000000000001 (NEEDED) Shared library: [librt.so.1]

0x0000000000000001 (NEEDED) Shared library: [libacl.so.1]

0x0000000000000001 (NEEDED) Shared library: [libc.so.6.1]

0x000000000000000c (INIT) 0x4000000000001e30

... snip ...

here, three libraries are speci�ed

the most commonly shared library is libc.
the other libraries are libacl and librt

https://bottomupcs.sourceforge.net/csbu/c3673.htm

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 13 / 54

Linking (3)

ldd "walks" the dependencies of libraries for you;
that is if a library depends on another library,
it will show it to you.

Looking at dynamic libraries
$ ldd /bin/ls

librt.so.1 => /lib/tls/librt.so.1 (0x2000000000058000)

libacl.so.1 => /lib/libacl.so.1 (0x2000000000078000)

libc.so.6.1 => /lib/tls/libc.so.6.1 (0x2000000000098000)

libpthread.so.0 => /lib/tls/libpthread.so.0 (0x20000000002e0000)

/lib/ld-linux-ia64.so.2 => /lib/ld-linux-ia64.so.2 (0x2000000000000000)

libattr.so.1 => /lib/libattr.so.1 (0x2000000000310000)

librt -> libacl -> libc -> libpthread -> ld-linux-ia64 -> libattr~

https://bottomupcs.sourceforge.net/csbu/c3673.htm

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 14 / 54

Linking (4)

Looking at dynamic libraries
librt.so.1 => /lib/tls/librt.so.1 (0x2000000000058000)

libacl.so.1 => /lib/libacl.so.1 (0x2000000000078000)

$ readelf --dynamic /lib/librt.so.1

Dynamic segment at offset 0xd600 contains 30 entries:

Tag Type Name/Value

0x0000000000000001 (NEEDED) Shared library: [libc.so.6.1]

0x0000000000000001 (NEEDED) Shared library: [libpthread.so.0]

... snip ...

libpthread has been required from librt

https://bottomupcs.sourceforge.net/csbu/c3673.htm

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 15 / 54

Using ldd command (1)

the ldd command provides a way to view the shared libraries
that a program is dynamically linked against.

a tool that helps developers

understand the dependencies of their programs and
optimize their performance.

https://ioflood.com/blog/ldd-linux-command/

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 16 / 54

Using ldd command (2)

-v Provides detailed information. ldd -v /usr/bin/grep
-u Shows unused direct dependencies. ldd -u /usr/bin/grep
-r Shows relocation processing. ldd -r /usr/bin/grep
-d Shows missing function dependencies. ldd -d /usr/bin/grep
-e Sets the environment variable. ldd -e LD_LIBRARY_PATH=/lib
-f Speci�es the format. ldd -f '%p %o' /usr/bin/grep
-n Avoids displaying the version number. ldd -n /usr/bin/grep
-N Speci�es the version. ldd -N2 /usr/bin/grep
-q Quiet mode. Only display errors. ldd -q /usr/bin/grep
-h Displays help. ldd -h

https://ioflood.com/blog/ldd-linux-command/

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 17 / 54

Using ldd command (3)

[root@wdctc1281 bin]# ldd node

linux-vdso.so.1 => (0x00007fffd33f2000)

libdl.so.2 => /lib64/libdl.so.2 (0x00007f70f7855000)

librt.so.1 => /lib64/librt.so.1 (0x00007f70f764d000)

libstdc++.so.6 => /lib64/libstdc++.so.6 (0x00007f70f7345000)

libm.so.6 => /lib64/libm.so.6 (0x00007f70f7043000)

libgcc_s.so.1 => /lib64/libgcc_s.so.1 (0x00007f70f6e2d000)

libpthread.so.0 => /lib64/libpthread.so.0 (0x00007f70f6c10000)

libc.so.6 => /lib64/libc.so.6 (0x00007f70f684f000)

/lib64/ld-linux-x86-64.so.2 (0x00007f70f7a61000)

What does the �rst line and last line mean?
They don't look like the normal

xxxx.so => /lib64/xxxxx.so (0xxxxxxxxxxxxxxxxxxxx)

https://stackoverflow.com/questions/34428037/how-to-interpret-the-output-of-the-ldd-program

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 18 / 54

Using ldd command (4)

the �rst line is the VDSO.
linux-vdso.so.1 => (0x00007fffd33f2000)

this is described in depth in the vdso(7) manpage.
basically it's a shared library that's embedded in your kernel
and automatically loaded whenever a new process is exec-ed.

that's why there's no �lesystem path on the right side
there is none!

the �le only exists in the kernel memory
(well, not 100% precise, but see the man page for more info).

https://stackoverflow.com/questions/34428037/how-to-interpret-the-output-of-the-ldd-program

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 19 / 54

Using ldd command (5)

the last line is the ELF interpreter.
/lib64/ld-linux-x86-64.so.2 (0x00007f70f7a61000)

the ELF interpreter is described in depth in the ld.so manpage.

it has a full path because your program node

has the full path hardcoded in it.
/lib64/ld-linux-x86-64.so.2

it doesn't have an entry on the right side
=> /lib64/xxxxx.so

because it's not linked against (stand alone)
thus no search was performed.

https://stackoverflow.com/questions/34428037/how-to-interpret-the-output-of-the-ldd-program

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 20 / 54

Using ldd command (6)

you can check this by running:
$ readelf -l node | grep interpreter

[Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]

$ scanelf -i node

ET_EXEC /lib64/ld-linux-x86-64.so.2 node

scanelf is a user-space utility to quickly scan given ELFs,
directories, or common system paths for di�erent information.

this may include ELF types, their PaX markings, TEXTRELs, etc. . .

to print INTERP information
scanelf -i, --interp

https://stackoverflow.com/questions/34428037/how-to-interpret-the-output-of-the-ldd-program

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 21 / 54

Using ldd command (7)

all the other lines are libraries you've linked against.
libdl.so.2 => /lib64/libdl.so.2 (0x00007f70f7855000)

librt.so.1 => /lib64/librt.so.1 (0x00007f70f764d000)

libstdc++.so.6 => /lib64/libstdc++.so.6 (0x00007f70f7345000)

libm.so.6 => /lib64/libm.so.6 (0x00007f70f7043000)

libgcc_s.so.1 => /lib64/libgcc_s.so.1 (0x00007f70f6e2d000)

libpthread.so.0 => /lib64/libpthread.so.0 (0x00007f70f6c10000)

libc.so.6 => /lib64/libc.so.6 (0x00007f70f684f000)

you can see those by looking at DT_NEEDED tags
when you run readelf -d on the �le.

https://stackoverflow.com/questions/34428037/how-to-interpret-the-output-of-the-ldd-program

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 22 / 54

Using ldd command (8)

since those �les lack full paths,
the ld.so needs to perform a dynamic path search for it.

that's actually what the lines are telling you:
libdl.so.2 => /lib64/libdl.so.2 (0x00007f70f7855000)

libdl.so.2 is needed, so when ld.so searched for it,
ld.so found it at /lib64/libdl.so.2
and was loaded into memory at address 0x00007f70f7855000

https://stackoverflow.com/questions/34428037/how-to-interpret-the-output-of-the-ldd-program

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 23 / 54

vDSO (1)

vDSO (virtual dynamic shared object) is a kernel mechanism
for exporting a carefully selected set of kernel space routines
to user space applications

applications can call these kernel space routines in-process,
without the performance overhead of a mode switch
from user mode to kernel mode

the performance overhead is inherent
when calling these same kernel space routines
by means of the system call interface.

https://en.wikipedia.org/wiki/VDSO

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 24 / 54

vDSO (2)

vDSO uses standard ELF format for linking and loading

vDSO is a memory area allocated in user space

exposes some kernel functionalities
dynamically allocated to o�er improved safety
through address space layout randomization
supports more than four system calls

Some C standard libraries, like glibc, may provide vDSO links
so that if the kernel does not support vDSO,
a traditional syscall is made.

https://en.wikipedia.org/wiki/VDSO

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 25 / 54

vDSO (3)

vDSO helps to

reduce the calling overhead on simple kernel routines
the best method of performing a system call on IA-32

such exported routines can provide proper DWARF
(Debug With Attributed Record Format) debugging information.

implementation generally implies
hooks in the dynamic linker to �nd the vDSOs

https://en.wikipedia.org/wiki/VDSO

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 26 / 54

Creating shared libary exampe (1)

Firstly I test with all dynamic: gcc -shared libtest.c -o libtest.so gcc -c
main.c -o main.o gcc main.o -o test -L. -ltest
It's working (compile and execute)
Secondly I test what I want (dynamic lib and static libc) : gcc -shared
libtest.c -o libtest.so gcc -c main.c -o main.o gcc main.o -o test libtest.so
/usr/lib/libc.a
It's compiling, but at execution, it segfault! A strace show that it's trying
to access libc.so!!!
Finally I've tried to compile a simple progam with no reference to dynamic
lib gcc -static main.c �> compile ok, run ok gcc main.c /usr/lib/libc.a �>
compile ok, run : segmentation fault (a strace show that it's access to
libc.so)

https://stackoverflow.com/questions/2176181/how-to-linking-with-dynamic-lib-so-and-static-libc-a

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 27 / 54

Creating shared libary exampe (2)

$ cat libtest.c #include <stdio.h> void foo() { printf("%d", 42); } $ cat
main.c #include <stdio.h> extern void foo(); int main() { puts("The
answer is:"); foo(); } $ export LD_LIBRARY_PATH=$PWD $ gcc
-shared libtest.c -o libtest.so && gcc -c main.c -o main.o && gcc main.o -o
test -L. -ltest && ./test The answer is: 42 $ gcc -shared libtest.c -o
libtest.so && gcc -c main.c -o main.o && gcc main.o -o test libtest.so
/usr/lib/libc.a && ./test The answer is: 42

https://stackoverflow.com/questions/2176181/how-to-linking-with-dynamic-lib-so-and-static-libc-a

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 28 / 54

Creating shared libary exampe (3)

However, you have to realise that the shared library you've build depends
on the shared libc. So, it's natural that it's trying to open it at runtime.
$ ldd ./libtest.so linux-gate.so.1 => (0xb80c7000) libc.so.6 =>
/lib/i686/cmov/libc.so.6 (0xb7f4f000) /lib/ld-linux.so.2 (0xb80c8000)
One way to achieve what you want is to use: -static-libgcc -Wl,-Bstatic -lc.

https://stackoverflow.com/questions/2176181/how-to-linking-with-dynamic-lib-so-and-static-libc-a

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 29 / 54

Creating shared libary

create a �le library.c

compile the library.c �le

gcc -shared -fPIC -o liblibrary.so library.c

-shared instructs the compiler
that we are building a shared library

-fPIC is to generate position-independent code

generates a shared library liblibrary.so

in the current working directory.

We have our shared object �le
(shared library name in Linux)
ready to use.

https://www.geeksforgeeks.org/working-with-shared-libraries-set-2/

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 30 / 54

Using shared libary (1)

create a �le application.c

compile the application.c �le

gcc application.c -L /home/coding/ -library -o sample

-library instructs the compiler
to look for symbol de�nitions
that are not available in the current code

the option -L is a hint to the compiler
to look in the directory followed by the option
for any shared libraries (during link-time only).

generates an executable named sample

https://www.geeksforgeeks.org/working-with-shared-libraries-set-2/

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 31 / 54

Using shared libary (2)

By default, it will not look into
the current working directory

You have to explicitly instruct the tool chain
to provide proper paths

otherwise, when you invoke the executable,
the dynamic linker will not be able
to �nd the required shared library

https://www.geeksforgeeks.org/working-with-shared-libraries-set-2/

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 32 / 54

Using shared libary (3)

The dynamic linker searches standard paths
available in the LD_LIBRARY_PATH
and also searches in the system cache

We have to add our working directory

to the LD_LIBRARY_PATH environment variable

export LD_LIBRARY_PATH=/home/work/:$LD_LIBRARY_PATH

You can now invoke our executable as shown.
./sample

https://www.geeksforgeeks.org/working-with-shared-libraries-set-2/

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 33 / 54

gcc -fpic (1)

-fpic

generate position-independent code (PIC)
suitable for use in a shared library,
if supported for the target machine.
Such code accesses all constant addresses
through a global o�set table (GOT).
The dynamic loader resolves the GOT entries
when the program starts

the dynamic loader is not part of GCC;
it is part of the operating system

man gcc

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 34 / 54

gcc -fpic (2)

-fpic

If the GOT size for the linked executable
exceeds a machine-speci�c maximum size,
you get an error message from the linker
indicating that -fpic does not work;
in that case, recompile with -fPIC instead.

These maximums are 8k on the SPARC,
28k on AArch64 and 32k on the m68k and RS/6000.
The x86 has no such limit

man gcc

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 35 / 54

gcc -fPIC

-fPIC

if supported for the target machine,
emit position-independent code,
suitable for dynamic linking and
avoiding any limit on the size of the global o�set table

This option makes a di�erence on
AArch64, m68k, PowerPC and SPARC (not on x86)

Position-independent code requires special support,
and therefore works only on certain machines.
When this �ag is set, the macros __pic__ and __PIC__

are de�ned to 2.

man gcc

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 36 / 54

gcc -shared (1)

-shared

produce a shared object
which can then be linked with other objects
to form an executable
not all systems support this option.
For predictable results, you must also specify
the same set of options used for compilation

(-fpic, -fPIC, or model suboptions)
when you specify this linker option

man gcc

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 37 / 54

gcc -shared (2)

Shared libraries and executables use the same format:
they are both loadable images. However,

shared libraries are usually position-independent,
executables are often not

This a�ects code generation: for position-independent
you have to load globals or jump to functions
using relative addresses

executables have an entry point
which is where execution starts.

this is usually not main(),
because main() is a function, and functions return,
but execution should never return from the entry point

https://stackoverflow.com/questions/25084855/how-does-gcc-shared-option-affect-the-output

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 38 / 54

gcc -shared (3)

parameters for collect2 without -shared:
-dynamic-linker

/lib64/ld-linux-x86-64.so.2

/usr/lib/gcc/x86_64-linux-gnu/4.7/../../../x86_64-linux-gnu/crt1.o

/usr/lib/gcc/x86_64-linux-gnu/4.7/crtbegin.o

/usr/lib/gcc/x86_64-linux-gnu/4.7/crtend.o

parameters for collect2 with -shared:
-shared

/usr/lib/gcc/x86_64-linux-gnu/4.7/crtbeginS.o

/usr/lib/gcc/x86_64-linux-gnu/4.7/crtendS.o

https://stackoverflow.com/questions/25084855/how-does-gcc-shared-option-affect-the-output

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 39 / 54

gcc -shared (4)

you still have to use -fpic or -fPIC, when -shared is used

it looks like code generation is not a�ected:

crt1.o (the C runtime) is only included
when linking the executable,
and thus when -shared is not used
or when Wl,-shared is used

https://stackoverflow.com/questions/25084855/how-does-gcc-shared-option-affect-the-output

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 40 / 54

gcc -shared (5)

Using nm crt1.o
$ nm /usr/lib/x86_64-linux-gnu/crt1.o

0000000000000000 R _IO_stdin_used

0000000000000000 D __data_start

U __libc_csu_fini

U __libc_csu_init

U __libc_start_main

0000000000000000 T _start

0000000000000000 W data_start

U main

seems to de�ne something to do with stdin,
as well as _start (which is the entry point),

has an unde�ned reference to main

https://stackoverflow.com/questions/25084855/how-does-gcc-shared-option-affect-the-output

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 41 / 54

gcc -shared (6)

passing -shared to gcc (gcc -shared)

gcc -shared -Wl,-soname,libtest.so -o libtest.so *.o

may enable or disable other �ags at link time.
different *~crt*~* files might be involved.

To get more information, grep for -shared
in GCC's gcc/config/ directory and subdirectories.

passing -shared to ld (gcc -Wl,-shared).

gcc -Wl,-shared -Wl,-soname,libtest.so -o libtest.so *.o

on i386 FreeBSD, gcc -shared will link in object �le crtendS.o,
while without -shared, it will link in crtend.o instead.

https://stackoverflow.com/questions/4623915/difference-between-shared-and-wl-shared-of-the-gcc-options

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 42 / 54

ld -R filename

-R filename

--just-symbols=filename

read symbol names and their addresses from �lename
but do not relocate it or include it in the output.

this allows your output �le to refer symbolically
to absolute locations of memory de�ned in other programs.

may use this option more than once
for compatibility with other ELF linkers,
if the -R option is followed by a directory name,
rather than a �le name, it is treated as the -rpath option.

man ld

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 43 / 54

ld -rpath=dir (1)

-rpath=dir

add a directory to the runtime library search path

used when linking an ELF executable with shared objects

all -rpath arguments are concatenated and
passed to the runtime linker, which uses them
to locate shared objects at runtime

man ld

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 44 / 54

ld -rpath=dir (2)

-rpath=dir

also used when locating shared objects which are needed
by shared objects explicitly included in the link;

see the description of the -rpath-link option.

Searching -rpath in this way is only supported
by native linkers and cross linkers
which have been con�gured with the --with-sysroot option.

man ld

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 45 / 54

ld -rpath=dir (3)

-rpath=dir

if -rpath is not used when linking an ELF executable,
the contents of the environment variable LD_RUN_PATH
will be used if it is de�ned.

If a -rpath option is used, the runtime search path
will be formed exclusively using the -rpath options,
ignoring the -L options.

This can be useful when using gcc, which adds many -L options
which may be on NFS mounted �le systems.

man ld

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 46 / 54

ld -rpath=dir (4)

-rpath=dir

for compatibility with other ELF linkers, if the -R option is
followed by a directory name, rather than a �le name,
it is treated as the -rpath option.

the -rpath option may also be used on SunOS.

By default, on SunOS, the linker will form a runtime search path
out of all the -L options it is given.

man ld

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 47 / 54

TOC: 5. -Wl,-rpath,. examples

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 48 / 54

Using -Wl,option

Pass option as an option to the linker.

If option contains commas,
it is split into multiple options at the commas.

You can use this syntax to pass an argument to the option.

For example, -Wl,-Map,output.map passes
-Map output.map to the linker.

When using the GNU linker, you can also get the same e�ect with
-Wl,-Map=output.map

https://gcc.gnu.org/onlinedocs/gcc/Link-Options.html

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 49 / 54

Using -Wl, rpath . (1)

in order to pass -rpath . to the linker, consider them as
two arguments (-rpath and .) to the -Wl

you can write (-Wl,arg1,arg2) or (-Wl,arg1, -Wl,arg2)

-Wl,-rpath,.

-Wl,-rpath -Wl,.

https://stackoverflow.com/questions/6562403/i-dont-understand-wl-rpath-wl

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 50 / 54

Using -Wl,-rpath,. (2)

the -Wl,xxx option for gcc passes
a comma-separated list of tokens
as a space-separated list of arguments
to the linker (ld)

to pass ld aaa bbb ccc (space separated)
gcc -Wl,aaa,bbb,ccc (comma separated)

to pass ld -rpath . (space separated)
gcc -Wl,-rpath,. (comma separated)

https://stackoverflow.com/questions/6562403/i-dont-understand-wl-rpath-wl

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 51 / 54

Using -Wl,-rpath,. (3)

alternatively, repeat instances of -Wl can be speci�ed

to pass ld aaa bbb ccc (space separated)
gcc -Wl,aaa -Wl,bbb -Wl,ccc (repeated instances)

there is no comma between -Wl,aaa and the second -Wl,bbb

but there is space

thus, to pass ld -rpath .

gcc -Wl,-rpath,. (comma separated)
gcc -Wl,-rpath -Wl,. (repeated instances)

https://stackoverflow.com/questions/6562403/i-dont-understand-wl-rpath-wl

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 52 / 54

Using -Wl,-rpath,. (4)

can remove the comma by using =

gcc -Wl,-rpath=.

arguably more readable than adding extra commas
exactly what gets passed to ld

thus, to pass ld -rpath .

gcc -Wl,-rpath,. (comma separated)
gcc -Wl,-rpath -Wl,. (repeated instances)
gcc -Wl,-rpath=. (using = instead of ,)

https://stackoverflow.com/questions/6562403/i-dont-understand-wl-rpath-wl

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 53 / 54

Using -Wl,-rpath,. (5)

You may need to specify the -L option as well

-Wl,-rpath,/path/to/foo -L/path/to/foo -lbaz

or you may end up with an error like
ld: cannot find -lbaz

https://stackoverflow.com/questions/6562403/i-dont-understand-wl-rpath-wl

Young W. Lim Link 3B. Shared Libraries 2024-11-13 Wed 54 / 54

	Based on
	Shared libraries Overview
	Including libraries in an executable
	Shared library background
	Specifying linker option using -W,option

