Differentiation of Discrete Functions

Young W Lim

Nov 14, 2024

Young W Lim [Differentiation of Discrete Functions](#page-16-0)

 4.171

伊 ▶ (三)

 299

∍

Copyright (c) 2024 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

This work is licensed under a [Creative Commons](https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en) ["Attribution-NonCommercial-ShareAlike 3.0 Unported"](https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en) license.

 $A\cup A$

オーモー にっ

 200

Based on Introduction to Matrix Algebra, Autar Kaw https://ma.mathforcollege.com

1 [Approximations of a first derivative](#page-3-0) [Direct Fit Polynomials](#page-3-0)

 4.17

э

 \sim

÷

つくへ

∍

1 [Approximations of a first derivative](#page-3-0) **·** [Direct Fit Polynomials](#page-3-0)

 \leftarrow

э \mathbf{h} ∍

 \sim

つくへ

∍

Direct Fit Polynomials

given $n+1$ data points

$$
(x_0,y_0),(x_1,y_1),\ldots,(x_{n-1},y_{n-1}),(x_n,y_n)
$$

one can fit a n^{th} order polynomial given by

$$
P_n(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + a_n x^n
$$

to find the first derivative

$$
P'_{n}(x) = \frac{dP_{n}(x)}{dx} = a_{1} + 2a_{2}x + \dots + (n-1)a_{n-1}x^{n-2} + a_{n}x^{n-1}
$$

similarly other derivatives can be found

 QQ

Direct Fit Polynomials

given $(n+1)$ data points

$$
(x_0,y_0),(x_1,y_1),\ldots,(x_{n-1},y_{n-1}),(x_n,y_n)
$$

one can fit a n^{th} order polynomial given by

$$
P_n(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + a_n x^n
$$

to find the first derivative

$$
P'_{n}(x) = \frac{dP_{n}(x)}{dx} = a_{1} + 2a_{2}x + \dots + (n-1)a_{n-1}x^{n-2} + a_{n}x^{n-1}
$$

similarly other derivatives can be found

 QQ

Lagrange Polynomials (1)

given $(n+1)$ data points

$$
(x_0,y_0),(x_1,y_1),\ldots,(x_{n-1},y_{n-1}),(x_n,y_n)
$$

one can fit a n^{th} order Lagrange polynomial given by

$$
f_n(x) = \sum_{i=0}^n L_i(x) f(x_i)
$$

where \bm{n} in $f_{\bm{n}}(\mathsf{x})$ stands for the $\bm{n}^{\bm{th}}$ order polynomial that approximates the function $y = f(x)$ given at $(n+1)$ data points as $(x_0,y_0),(x_1,y_1),\ldots,(x_{n-1},y_{n-1}),(x_n,y_n)$

Lagrange Polynomials (2-1)

one can fit a n^{th} order Lagrange polynomial given by

$$
f_n(x) = \sum_{i=0}^n L_i(x) f(x_i)
$$

where \bm{n} in $f_n(x)$ stands for the \bm{n}^{th} order polynomial for the function $y=f(x)$

$$
f_n(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + a_n x^n = \sum_{i=0}^n L_i(x) f(x_i)
$$

given at $(n+1)$ data points as $(x_0,y_0),(x_1,y_1),...,(x_{n-1},y_{n-1}),(x_n,y_n)$, and

$$
L_i(x) = \prod_{j=0, j \neq i}^{n} \frac{x - x_j}{x_i - x_j}
$$

 QQ

何 ▶ ヨ ヨ ▶ ヨ ヨ ▶

Lagrange Polynomials (2-2)

given a set of $(n+1)$ nodes $\{x_0, x_1, \ldots, x_n\}$, which must all be distinct, $x_j \neq x_i$ for indices $j \neq i$,

the Lagrange basis for polynomials of degree $\leq n$ for those nodes is the set of polynomials $\{L_0(x), L_1(x), \ldots, L_n(x)\}\$

$$
L_i(x) = \prod_{j=0, j \neq i}^{n} \frac{x - x_j}{x_i - x_j}
$$

= $\frac{x - x_0}{x_i - x_0} \cdot \frac{x - x_1}{x_i - x_1} \cdot \dots \cdot \frac{x - x_{i-1}}{x_i - x_{i-1}} \cdot 1 \cdot \frac{x - x_{i+1}}{x_i - x_{i+1}} \cdot \frac{x - x_{i+2}}{x_i - x_{i+2}} \cdot \dots \cdot \frac{x - x_n}{x_i - x_n}$

https://en.wikipedia.org/wiki/Lagrange_polynomial

向 ▶ (ヨ) (ヨ)

 Ω

Lagrange Polynomials (2-3)

each Lagrange basis of degree n take values $L_i(x_i) = 0$ if $j \neq i$ and $L_i(x_i) = 1$.

Using the **Kronecker delta** this can be written $L_i(x_j) = \delta_{ij}$.

Each basis polynomial can be explicitly described by the product:

$$
L_i(x) = \prod_{j=0, j \neq i}^{n} \frac{x - x_j}{x_i - x_j}
$$

= $\frac{x - x_0}{x_i - x_0} \cdot \frac{x - x_1}{x_i - x_1} \cdot \dots \cdot \frac{x - x_{i-1}}{x_i - x_{i-1}} \cdot 1 \cdot \frac{x - x_{i+1}}{x_i - x_{i+1}} \cdot \frac{x - x_{i+2}}{x_i - x_{i+2}} \cdot \dots \cdot \frac{x - x_n}{x_i - x_n}$

https://en.wikipedia.org/wiki/Lagrange_polynomial

 $\sqrt{2}$) $\sqrt{2}$) $\sqrt{2}$

 2990

重

Lagrange Polynomials (2-4)

$$
L_i(x_j) = \prod_{k=0, k \neq i}^{n} \frac{x_j - x_k}{x_i - x_k}
$$

= $\frac{x_j - x_0}{x_i - x_0} \cdot \frac{x_j - x_1}{x_i - x_1} \cdot \dots \cdot \frac{x_j - x_{i-1}}{x_i - x_{i-1}} \cdot 1 \cdot \frac{x_j - x_{i+1}}{x_i - x_{i+1}} \cdot \frac{x_j - x_{i+2}}{x_i - x_{i+2}} \cdot \dots \cdot \frac{x_j - x_n}{x_i - x_n}$
= 0 \dots $\exists j = k \neq i$

$$
L_i(x_i) = \prod_{k=0, k \neq i}^{n} \frac{x_i - x_k}{x_i - x_k}
$$

= $\frac{x_i - x_0}{x_i - x_0} \cdot \frac{x_i - x_1}{x_i - x_1} \cdot \dots \cdot \frac{x_i - x_{i-1}}{x_i - x_{i-1}} \cdot 1 \cdot \frac{x_i - x_{i+1}}{x_i - x_{i+1}} \cdot \frac{x_i - x_{i+2}}{x_i - x_{i+2}} \cdot \dots \cdot \frac{x_i - x_n}{x_i - x_n}$
= 1

https://en.wikipedia.org/wiki/Lagrange_polynomial

 \leftarrow

冊 \sim 4 重 下 メ 草 下

 299

э

Lagrange Polynomials (3)

hen to find the first derivative, one can differentiate $f_n(x)$ for other derivatives.

$$
f_n(x) = \sum_{i=0}^n L_i(x) f(x_i)
$$

For example, the second order Lagrange polynomial passing through $(x_0, y_0), (x_1, y_1), (x_2, y_2)$

$$
f_2(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2)
$$

$$
L_0(x) = \prod_{j=0, j \neq i}^{2} \frac{x - x_j}{x_0 - x_j}, \qquad L_1(x) = \prod_{j=0, j \neq i}^{2} \frac{x - x_j}{x_1 - x_j}, \qquad L_2(x) = \prod_{j=0, j \neq i}^{2} \frac{x - x_j}{x_2 - x_j}
$$

向 ▶ (ヨ) (ヨ)

Lagrange Polynomials (4)

the second order Lagrange polynomial passing through $(x_0, y_0), (x_1, y_1), (x_2, y_2)$

$$
f_2(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2)
$$

$$
L_0(x) = \prod_{j=0, j \neq i}^{2} \frac{x - x_j}{x_0 - x_j}, \qquad L_1(x) = \prod_{j=0, j \neq i}^{2} \frac{x - x_j}{x_1 - x_j}, \qquad L_2(x) = \prod_{j=0, j \neq i}^{2} \frac{x - x_j}{x_2 - x_j}
$$

\n
$$
L_0(x) = \frac{x - x_1}{x_0 - x_1} \cdot \frac{x - x_2}{x_0 - x_2}, \qquad L_1(x) = \frac{x - x_0}{x_1 - x_0} \cdot \frac{x - x_2}{x_1 - x_2}, \qquad L_2(x) = \frac{x - x_0}{x_2 - x_0} \cdot \frac{x - x_1}{x_2 - x_1}
$$

\n
$$
f_2(x) = \frac{x - x_1}{x_0 - x_1} \cdot \frac{x - x_2}{x_0 - x_2} f(x_0) + \frac{x - x_0}{x_1 - x_0} \cdot \frac{x - x_2}{x_1 - x_2} f(x_1) + \frac{x - x_0}{x_2 - x_0} \cdot \frac{x - x_1}{x_2 - x_1} f(x_2)
$$

 4.17

 299

重き э

Lagrange Polynomials (5)

the second order Lagrange polynomial passing through $(x_0,y_0), (x_1,y_1), (x_2,y_2)$

$$
f_2(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2)
$$

$$
f_2(x) = \frac{x - x_1}{x_0 - x_1} \cdot \frac{x - x_2}{x_0 - x_2} f(x_0) + \frac{x - x_0}{x_1 - x_0} \cdot \frac{x - x_2}{x_1 - x_2} f(x_1) + \frac{x - x_0}{x_2 - x_0} \cdot \frac{x - x_1}{x_2 - x_1} f(x_2)
$$

$$
\frac{d}{dx} (x - x_1)(x - x_2) = (x - x_2) + (x - x_1) = 2x - (x_1 + x_2)
$$

$$
\frac{d}{dx} f_2(x) = \frac{2x - (x_1 + x_2)}{(x_0 - x_1)(x_0 - x_2)} f(x_0) + \frac{2x - (x_0 + x_2)}{(x_1 - x_0)(x_1 - x_2)} f(x_1) + \frac{2x - (x_0 + x_1)}{(x_2 - x_0)(x_2 - x_1)} f(x_2)
$$

$$
\frac{d^2}{dx^2} f_2(x) = \frac{2f(x_0)}{(x_0 - x_1)(x_0 - x_2)} + \frac{2f(x_1)}{(x_1 - x_0)(x_1 - x_2)} + \frac{2f(x_2)}{(x_2 - x_0)(x_2 - x_1)}
$$

 299

ヨッ ∍

Tangent Lines

- as $h \rightarrow 0$, $Q \rightarrow P$ and the secant line \rightarrow the tangent line
- the slope of the tangent line

$$
m_{tangent} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{(a+h) - a}
$$

$$
= \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}
$$

4日) a. 伊 ▶ ヨ ヨ ▶ 299

∍

∢ 重→

Young W Lim [Differentiation of Discrete Functions](#page-0-0)

メロメ メタメ メミメ メミメー

重

Young W Lim [Differentiation of Discrete Functions](#page-0-0)

メロメ メタメ メミメ メミメー

重