

What We Test in
Wikimedia

Amir E. Aharoni
@aharoni

Pune Language Summit
November 2012

What we have
What we lack

What can we learn

PHP

PHPunit – what we have

● Integrated with Gerrit using Jenkins – can't
merge code if tests don't pass

● Comprehensive tests for the wiki syntax parser
● Coverage of other areas is partial
● Tests for some extensions
● CLDR plural rules – tested
● Gender and grammar – tested

PHPunit – what we lack

● i18n testing is partial
● Only unit tests
● Tests can only run properly on a MediaWiki

installation in English
– For example, they include some hard-coded

English messages in the expected results

● This causes issues to be missed, because
people try to make tests pass

JavaScript

QUnit – what we have 1

● Tests for some of the JavaScript in core
MediaWiki

● Most extensions don't have JavaScript tests,
even though many have a lot of JavaScript

● Our i18n extensions were among the first to
have QUnit tests \o/
– WebFonts, Narayam (keyboard layouts)

QUnit – what we have 2

● QUnit tests for our portable jQuery libraries:
– ULS

– i18n (parser and loader for MediaWiki-like L10n)

– WebFonts (MediaWiki-independent)

– IME (new generation of Narayam)

● Part of the the build process using Phantom.js
– doesn't require a browser window

● Integrated with GitHub pull requests (Travis)

QUnit – what we lack

● Integration with Jenkins.
● As with PHPunit: tests may fail if the wiki

language is not English
● Using some hacks we can switch the

language during the test, but it's not really
robust

Random stuff

Debugging

● We have a debug mode, which doesn't minify
the JavaScript for easier testing and
debugging

● Challenge: Unfortunately, for various reasons
it also means that RTL auto-flipping
(CSSJanus) is not done
– Lesson: integrating minification and i18n-related

processing may prove troublesome

Pseudo-localization

● We have a fake "RTL English" mode for
debugging

● It's not actually used much – better to use real
people who know an RTL language :)

Frontend

Not yet

● Some beginning attempts to use Selenium
and Watir, but nothing seriously integrated yet

Humans
a.k.a PEBKAC

2009 – Vector

● A big upgrade to the default skin of Wikipedia
● UX testing was outsourced
● User testing with a few dozens of people in San

Francisco
● Not regular editors of Wikipedia
● Results:

– A lot of i18n bugs missed
– A lot of veteran users complained about incorrect features

2012 – ULS

● Designed and performed by our interaction
designers

● Tested – speakers of English, German,
Russian, Hebrew, Breton, French, Hindi and
other languages

● Over Skype and Google Hangout

2012 – ULS: prototypes

● Prototypes done in Photoshop, Inkscape,
Illustrator, Pencil (a Firefox extension) and basic
HTML/JavaScript/CSS

● Enough to show and test the workflow
● Incomplete implementation of the whole ULS

logic
– Just the main relevant scenarios

– Scenarios that prove to be working are then
implemented completely by the developers

2012 – ULS: process

● Users were asked to perform tasks:
– Find your language (using any method)

– Find a particular language (using any method)
● Measure: which method is the most popular. (Answer:

most people go for the search box.)

– Find a language using the map

– Find a language using the list

– Find a language using the search box

2012 – ULS: results

● Confusion of new users helped identify and fix
problems in the design.

● Experienced users suggested features to
make their work more efficient
– Example: Search by language code, rather than

just language name (most people don't know ISO
639 codes, but power users do)

Dream:
Integrated i18n testing methodology

Known i18n problems

● Software translators translate without context
– need better docs and screenshots

● Terminology may be inconsistent – need
glossaries

● Functional keyboard shortcuts may collide with
keyboard layouts in some languages

Known i18n problems, cont.

● Fonts may be too small
● Translations may be too long
● Translations created in run time may be wrong

(gender, plural, grammar, concatenation
surprises, RTL issues)

Currently

● Encourage developers to write documentation
– Undocumented translatable messages are not

supposed to pass code review, but in practice they
often do

● Wait for translators to complain about bugs
and unclear messages
– This works quite well in the translatewiki.net

community, but could always be more robust

The dream

● To have a methodology for making relevant
documentation and testing procedures as
automatic as possible:
– Check coverage of all possible message

permutations

– Create all relevant screenshots for documentation

– Warn about potential readability problems

Questions
?

Discussion
!

Thank you
:)

	שקופית 1
	שקופית 2
	שקופית 3
	שקופית 4
	שקופית 5
	שקופית 6
	שקופית 7
	שקופית 8
	שקופית 9
	שקופית 10
	שקופית 11
	שקופית 12
	שקופית 13
	שקופית 14
	שקופית 15
	שקופית 16
	שקופית 17
	שקופית 18
	שקופית 19
	שקופית 20
	שקופית 21
	שקופית 22
	שקופית 23
	שקופית 24
	שקופית 25
	שקופית 26

