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What we have
What we lack

What can we learn



  

PHP



  

PHPunit – what we have

● Integrated with Gerrit using Jenkins – can't 
merge code if tests don't pass

● Comprehensive tests for the wiki syntax parser
● Coverage of other areas is partial
● Tests for some extensions
● CLDR plural rules – tested
● Gender and grammar – tested



  

PHPunit – what we lack

● i18n testing is partial
● Only unit tests
● Tests can only run properly on a MediaWiki 

installation in English
– For example, they include some hard-coded 

English messages in the expected results

● This causes issues to be missed, because 
people try to make tests pass



  

JavaScript



  

QUnit – what we have 1

● Tests for some of the JavaScript in core 
MediaWiki

● Most extensions don't have JavaScript tests, 
even though many have a lot of JavaScript

● Our i18n extensions were among the first to 
have QUnit tests \o/
– WebFonts, Narayam (keyboard layouts)



  

QUnit – what we have 2

● QUnit tests for our portable jQuery libraries:
– ULS

– i18n (parser and loader for MediaWiki-like L10n)

– WebFonts (MediaWiki-independent)

– IME (new generation of Narayam)

● Part of the the build process using Phantom.js 
– doesn't require a browser window

● Integrated with GitHub pull requests (Travis)



  

QUnit – what we lack

● Integration with Jenkins.
● As with PHPunit: tests may fail if the wiki 

language is not English
● Using some hacks we can switch the 

language during the test, but it's not really 
robust



  

Random stuff



  

Debugging

● We have a debug mode, which doesn't minify 
the JavaScript for easier testing and 
debugging

● Challenge: Unfortunately, for various reasons 
it also means that RTL auto-flipping 
(CSSJanus) is not done
– Lesson: integrating minification and i18n-related 

processing may prove troublesome



  

Pseudo-localization

● We have a fake "RTL English" mode for 
debugging

● It's not actually used much – better to use real 
people who know an RTL language :)



  

Frontend



  

Not yet

● Some beginning attempts to use Selenium 
and Watir, but nothing seriously integrated yet



  

Humans
a.k.a PEBKAC



  

2009 – Vector

● A big upgrade to the default skin of Wikipedia
● UX testing was outsourced
● User testing with a few dozens of people in San 

Francisco
● Not regular editors of Wikipedia
● Results:

– A lot of i18n bugs missed
– A lot of veteran users complained about incorrect features



  

2012 – ULS

● Designed and performed by our interaction 
designers

● Tested – speakers of English, German, 
Russian, Hebrew, Breton, French, Hindi and 
other languages

● Over Skype and Google Hangout



  

2012 – ULS: prototypes

● Prototypes done in Photoshop, Inkscape, 
Illustrator, Pencil (a Firefox extension) and basic 
HTML/JavaScript/CSS

● Enough to show and test the workflow
● Incomplete implementation of the whole ULS 

logic
– Just the main relevant scenarios

– Scenarios that prove to be working are then 
implemented completely by the developers



  

2012 – ULS: process

● Users were asked to perform tasks:
– Find your language (using any method)

– Find a particular language (using any method)
● Measure: which method is the most popular. (Answer: 

most people go for the search box.)

– Find a language using the map

– Find a language using the list

– Find a language using the search box



  

2012 – ULS: results

● Confusion of new users helped identify and fix 
problems in the design.

● Experienced users suggested features to 
make their work more efficient
– Example: Search by language code, rather than 

just language name (most people don't know ISO 
639 codes, but power users do)



  

Dream:
Integrated i18n testing methodology



  

Known i18n problems

● Software translators translate without context 
– need better docs and screenshots

● Terminology may be inconsistent – need 
glossaries

● Functional keyboard shortcuts may collide with 
keyboard layouts in some languages



  

Known i18n problems, cont.

● Fonts may be too small
● Translations may be too long
● Translations created in run time may be wrong 

(gender, plural, grammar, concatenation 
surprises, RTL issues)



  

Currently

● Encourage developers to write documentation
– Undocumented translatable messages are not 

supposed to pass code review, but in practice they 
often do

● Wait for translators to complain about bugs 
and unclear messages
– This works quite well in the translatewiki.net 

community, but could always be more robust



  

The dream

● To have a methodology for making relevant 
documentation and testing procedures as 
automatic as possible:
– Check coverage of all possible message 

permutations

– Create all relevant screenshots for documentation

– Warn about potential readability problems



  

Questions
?

Discussion
!

Thank you
:)
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