
branch of geometry deals with relations dependent on posi-
tion alone, and investigates the properties of position; it does
not take magnitudes into consideration, nor does it involve
calculation with quantities.’’28

At that point, Euler generalized the Königsberg prob-
lem to ‘‘any configuration of the river and the branches
into which it may divide, as well as any number of bridges,
to determine whether or not it is possible to cross each
bridge exactly once.’’ Although Euler’s 1736 paper is
generally regarded as the origin of graph theory, that term
was only introduced by J. J. Sylvester in 1878 and its ter-
minology codified by George Pólya and others about
1936.29 Euler reduced topography to alphabetic symbol-
ism and derived simple rules, though without defining a
numerical index that would ‘‘involve calculation with
quantities,’’ as he put it.

Euler later devised such an index when he returned to
the ‘‘geometry of position’’ in his ‘‘Elements of the doctrines
of solids’’ (1752), the first of two papers on the relations
between the number of vertices (V), edges (E), and faces
(F) of polyhedra (Fig. 5).30

Euler’s crucial innovation here was to introduce the
concept of the edge (acies) of a polyhedron, which, curi-
ously enough, had never before been explicitly defined.
Euler drew from Euclid the concept of a polyhedron’s faces
(facies) and its angulus solidus, here meaning not ‘‘solid
angle’’ (in its present sense) but the point from which such
an angle emerges, later called a ‘‘vertex’’ by Legendre
(about 1794). If a solid polyhedron is bounded by plane
faces, Euler concluded that ‘‘the sum of the number of solid
angles plus the number of faces exceeds the number of
edges by 2,’’ or V + F – E = 2, ‘‘Euler’s polyhedral for-
mula.’’ Here the requirement of closure for the polyhedron
corresponds to the connectedness of an Euler walk in the
Königsberg problem.31 By identifying V, F, and E, Euler
now could define the index V + F – E = 2.

The structure of this relation is strikingly similar to the
degree of agreeableness of musical intervals. Both V + F –
E = 2 and s – n + 1 = d provide a general categorization
of polyhedra and musical intervals, respectively, subsum-
ing their individual differences under a larger genus,
although Euler’s musical degree was more general than his

Figure 5. Euler’s illustrations of polyhedra in his ‘‘Elements of the doctrines of solids’’ (1752).

28‘‘The Seven Bridges of Königsberg,’’ in J. R. Newman (ed.), World of Mathematics, Simon and Schuster, New York, 1956, 1:573–580 (emphasis added). Original text

E53, I.7.1–10. See also B. Mahr and W. Velminski, ‘‘Denken in Modellen: Zur Lösung des Königsberger Brückenproblems,’’ in Bredekamp and Velminski, Mathesis &

Graphé, 85–100.
29See Norman Biggs, E. Keith Lloyd, and Robin J. Wilson, Graph Theory, 1736–1936, Clarendon Press, Oxford, 1986. See also W. Velminski (ed.), Leonhard Euler, die

Geburt der Graphentheorie: Ausgewählte Schriften von der Topologie zum Sodoku, Kulturverlag Kadmos, Berlin, 2009.
30Elementa doctrina solida,’’ E230, I.26.71–93; ‘‘Demonstratio nonnullarum insignium proprietatum, quibus solida hedris planis inclusa sunt praedita’’ E231, I.26.94–

109. For commentary, see Sandifer, How Euler Did It, 9–18.
31Note that Euler states his conclusion verbally, rather than algebraically. For an excellent presentation of the details of both arguments and their connections, see David

S. Richeson, Euler’s Gem: The Polyhedron Formula and the Birth of Topology, Princeton University Press, Princeton, New Jersey, 2008. See also Debnath, The Legacy

of Leonhard Euler, 153–173.
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