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Abstract 

The aim of this paper is to provide a robust Fault Detection and Isolation (FDI) approach that 
combines the set-invariance approach with a zonotopic interval observer. The effect of the uncertainty 
is taken into account considering zonotopic-set representations in both the transient and steady states. 
The set-invariance approach is used to characterize the fault detectability and isolability properties in 
the steady-state operation of the system. In particular, the Minimum Detectable Fault (MDF) and the 
Minimum Isolable Fault (MIF) are characterized for several type of faults in separate formulations uti- 
lizing the integration of classical sensitivity analysis and set-invariance approaches. Finally, a simulation 
example based on a two-tanks system is employed to both illustrate and discuss the effectiveness of the 
proposed approach. 
© 2019 The Franklin Institute. Published by Elsevier Ltd. All rights reserved. 
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In order to produce efficient and high-quality products, modern processes and systems
ust satisfy their function correctly. Consequently, there are some important issues as safety

peration, cost efficiency or environmental protection that must be considered in engineering
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applications [1] . In this regard, Fault Detection and Isolation (FDI) is an increasingly important
area in automatic control since the fault can be known as one of the reasons of unsatisfactory
performance or even instability of a dynamic system. Generally speaking, the goal of FDI
theory is referred to find the root causes of the fault occurrence. After detecting the fault,
maintaining the overall system stability with an acceptable performance will be the next target
to be achieved by including some fault-tolerant mechanisms [2] . 

Model-based FDI is nowadays a well-established approach that is becoming increasingly 

important in the field of automatic control. Basically, model-based FDI relies on the use of
a mathematical model to describe the system behavior [3,4] . The first step of FDI is Fault
Detection (FD). In order to detect the fault, the real system behaviour obtained from sensors
and the estimated one using the mathematical model are compared [3,5] . The fault is detected
when an inconsistency is found between the real and modelled behaviours. 

In model-based FDI, the performance of FD relies on improving the quality of the math-
ematical model [6,7] . But, due to the effect of model uncertainty, unknown disturbances and
noises, the mismatch between the actual and estimated process behaviour is non-negligible 
even if there are no process faults [8] . Thus, consideration of the uncertainties is an im-
portant issue, and plays a key role in model-based FD framework [9,10] . In recent years,
several methods have been proposed and developed to explicitly consider model uncertainty 

in FD. In particular, there exist two different paradigms for considering the uncertainty in
the model. In the stochastic approaches, uncertainties are represented using random variables, 
while in the deterministic approaches (also called set-membership approach), uncertainties 
are assumed unknown but bounded by means of different type of sets, e.g., interval boxes,
polytopes, ellipsoids and zonotopes [5,11–14] . According to [15] , polytopes provide tighter 
enclosures than interval boxes. However, the main drawback of using general polytopes is 
related to the complexity of vertices enumeration with respect to the space dimension. But
using zonotopes, basic set operations can be reduced to simple matrix calculations. This fact
has recently motivated the use of zonotopes 1 for modeling the effect of uncertainties [19] .

Any significant inconsistency between the predicted value(s) of output(s) from the model 
and the real measured value(s) of output(s) given by the sensor, called residual, is known as a
fault occurrence [3,6] . Therefore, detecting the existence of a fault relies on the comparison of
the evaluated residual with a threshold value that takes into account the uncertainties [5,20] .
In practice, the fault will be detected if the residual is larger than such a threshold. There
are several approaches associated with generating the residual [3,6,21] . So far, one of the
most widely used paradigms for generating the residual is the observer-based approach [22] .
Observer-based approaches provide state and output estimations from the measurements and 

the model either stochastic (e.g., Kalman filters) or deterministic approaches (e.g., Luenberger 
observers) uncertainties. Then, the FD test is based on generating the residual using the output
estimation error [6,9,16,22] . 

One major issue in model-based FD framework is how to consider the effect of state
disturbances, measurement noise and different faults [9,16,23–25] . Classical methods provide 
only an estimation based on the nominal system model. However, they do not provide a
reliable characterization of the uncertainty effect in the model prediction [26] . Moreover, in
the case that the residual is evaluated using statistical methods, the uncertainty is assumed to
1 Zonotopes are known as a class of polytopes whose shape is implicitly represented by a rectangular matrix (see 
[9,16,17] and [18] for further information. 
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ave known distribution. But in many cases, it is difficult to validate this assumption, where
he priori knowledge of the distributions of disturbances and noises is not available [27] .
herefore, assuming that the uncertainty is unknown but bounded can be more adequate. This
llows to use the set-theoretical approaches for the state estimation. Recently, there has been
n increasing interest in using set-theoretical approaches in FDI, e.g., interval observer, set-
embership and set-invariance approaches [9,28,29] . Among them, set-invariance approach

llows to determine the residual invariant sets that can be computed in each healthy or faulty
peration mode of the system [30–33] . As long as both healthy and faulty sets are separated,
DI can be performed [32,33] . 

One major drawback of the set-invariance approach is related to the limitation of computing
he finite description of its boundary in all cases. There is a large number of published studies
escribing the computation of invariant sets. 

The Robust Positively Invariant (RPI) set defined as a bounded region in state-space where
he system state can be confined, despite of considering the bounded system uncertainties
34,35] . Furthermore, the minimal Robust Positively Invariant (mRPI) set is a unique and
ompact RPI set that contained in any closed RPI set [32,36] . In recent years, researchers
ave investigated a variety of approaches to construct the RPI set. So far, the proposed
pproaches can be classified into two main categories: (i) explicit approaches, where the
PI set is computed using the explicit formulation of the set boundary [31] , (ii) iterative
pproaches, where the recursive iteration of the approximation of the system dynamics can
e used to reach the RPI set [23,37] . When applied to FDI, the set-invariance approach is
seful to check the separation of healthy and faulty residual set in the steady state. 

Recently, most of the reported research about the field has highlighted the interest of
sing the capability of the set-invariance approach in FDI framework during the transient
peration of the system using the set-theoretical approaches. In [35] , the relationship between
he classical observer-based and the set-invariance approaches in FD is proposed. Then, in
38–40] , the characterization of the minimum magnitude of the fault that can be detected is
omputed by using both the observer-based and set-invariance approaches. However, there
as been few discussion about the combination of the mentioned approaches. Then, both
pproaches are still considered as two different techniques into the FDI framework. 

So far, the most serious weakness of the set-invariance approach in comparison with the
nterval observer approach is related to its limited use to detect faults in transient state. On
he other hand, one important feature of the set-invariance approach is the ability of assessing
oth fault detectability and isolability properties by means of the off-line computation of the
nvariant sets for the residual that characterize the healthy and faulty operation modes of the
ystem. In the set-invariance approach, the fault isolability can be obtained by guaranteeing
he separability of faulty residual sets, not being possible through the use of the interval
bserver approach only. Therefore, the main contribution of this paper is to integrate the
bserver-based and set-invariance approaches to develop an FDI scheme such that it can be
sed in both transient and steady states of a system evolution. Furthermore, the Minimum
etectable Fault (MDF) and the Minimum Isolable Fault (MIF) are characterized based on the

ombination of the classical sensitivity analysis and the set-invariance approach. Moreover,
he zonotopic representation of a set is considered for propagating the effect of uncertainties
ince its related operations can be reduced to simple matrix calculation in comparison with
he huge number of vertices of the equivalent polytopes. Finally, a well-known benchmark
ased on the two-tank system is used as a case study for both illustrating and analyzing the
ffectiveness of the proposed approach in the paper. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

The structure of the paper is the following: the problem formulation is presented in
Section 2 . Both the zonotopic interval observer structure and its application to FD are
discussed in Section 3.1 . The general framework of set-invariance approach is discussed in
Section 3.2 . On-line propagation of the residual set and the FDI design integrating the
observer-based and set-invariance approaches are presented in Section 4 . In Section 5 , the
application of the proposed approach to a two-tank system is used in order to illustrate its
effectiveness. Finally, the conclusions are drawn in Section 6 . For completeness, relevant 
definitions and properties of zonotopes are recalled in the Appendix . 

Notation 

Throughout this paper, R 

n denotes the set of n -dimensional real numbers and � denotes 
the Minkowski sum. The matrices are written using capital letter, e.g., A , the calligraphic
notation is used for denoting sets, e.g., X , the transfer functions are highlighted using script
font e.g., H , ‖ . ‖ s denotes the s -norm, [ x , x ] is an interval with lower bound x and upper
bound x . The notations io and si in the mathematical formulations denote the interval observer
and set-invariance approaches, respectively. 

2. Problem formulation

2.1. Problem set-up 

In this paper, discrete-time linear uncertain system to be monitored is described in state
space as 

x k+1 = Ax k + Bu k + E ω ω k , (1a)

y k = Cx k + E υυk , (1b) 

where u ∈ R 

n u , y ∈ R 

n y and x ∈ R 

n x are the input, the output and the state vectors, respec-
tively. Moreover, A ∈ R 

n x ×n x , B ∈ R 

n x ×n u and C ∈ R 

n y ×n x are the state-space matrices. Both
state disturbance and process noise vectors are defined by ω ∈ R 

n x and υ ∈ R 

n y , respectively.
Moreover, E ω and E υ are the associated distribution matrices with appropriate dimensions 
while k ∈ N indicates the discrete time.

Due to the effect of the process disturbance and measurement noise in Eq. (1) , a perfectly
accurate and complete of the estimated behaviour of the systems is not possible. Therefore, 
the effect of modeling uncertainties in Eq. (1) is one of the most crucial points in this paper.
In this regard, the considered uncertainties are assumed to be unknown but bounded in their
uncertainty intervals and can vary at each time step, i.e., ω k ∈ W k and υk ∈ V k , where W k

and V k are interval boxes

W k =
{
ω k ∈ R 

n x : 
∣∣ω k − c ω,k 

∣∣ ≤ ω̄ k , c ω,k ∈ R 

n x , ω̄ k ∈ R 

n x 
}
, (2a)

V k =
{
υk ∈ R 

n y : 
∣∣υk − c υ,k 

∣∣ ≤ ῡk , c υ,k ∈ R 

n y , ῡk ∈ R 

n y 
}
, (2b) 

where c ω , ω̄ , c υ and ῡ are constant vectors. As mentioned before, the effect of uncertainty
can be characterized using a zonotopic-set representation (i.e., a particular type of polytope) 
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educing the set operations to simple matrix calculations [29,41] . In this regard, the zonotopic
epresentation of ω and υ in Eq. (2) can be written as 

 = 

〈 c ω , R ω 〉 , (3a)

 = 

〈 c υ, R υ〉 , (3b)

here c ω and c υ denote the centers of the measurement disturbance and the process noise
onotopes, respectively, with their generator matrices R ω ∈ R 

n ω ×n ω and R υ ∈ R 

n υ×n υ .

ssumption 2.1. The additive uncertainties represented in Eq. (3) are assumed to be bounded
y a unit hypercube expressed as the centered zonotopes, i.e., for all k ≥ 0, ω ∈ 

〈
0, I n ω 

〉
and

υ ∈ 

〈
0, I n υ

〉
, where I n ω ∈ R 

n ω ×n ω and I n υ ∈ R 

n υ×n υ denote the identity matrices.

ssumption 2.2. The initial state x 0 belongs to the zonotopic set X 0 = 

〈 c 0 , R 0 〉 , where c 0 ∈
 

n x denotes the center and R 0 ∈ R 

n x ×r R 0 is a non-empty matrix containing the generators
atrix of the initial zonotope X 0 .

From hereafter, the subscript k + 1 will be replaced by + and k will be omitted for the
ake of simplified notations. Consequently, the dynamical model (1) can be written as 

 + 

= Ax + Bu + E ω ω, (4a)

 = Cx + E υυ. (4b)

Furthermore, for the sake further simplification, the acronyms IOA and SIA will be used
o denote the interval-observer and set-invariance approaches, respectively. 

.2. Observer structure 

Monitoring the healthy operation of a system with the dynamical model (4) can be done
y designing a linear Luenberger observer of the form 

ˆ  + 

= A ̂  x + Bu + L(y − ˆ y ) , (5a)

ˆ  = C ̂  x , (5b)

here ˆ x and ˆ y are the state estimation and the output prediction, respectively. Furthermore,
 denotes the observer gain that should be chosen such (A − LC) is a Schur matrix (i.e.,
ith all eigenvalues with a module less than unity) that guarantees the convergence of the
bserver. Moreover, L can provide degrees of freedom to tune the system monitoring, e.g.,
ith the goal of optimizing the detection of faults. Moreover, the pair { A , C } is assumed to
e detectable. 

. Preliminaries

.1. Zonotopic interval-observer approach 

Using the zonotopic-set representation of the uncertainties, i.e., W and V, the state bound-
ng observer for the dynamical model (4) can be obtained as a zonotope ˆ X = 

〈 c, R 

〉 using
he Luenberger observer (5) and Proposition 3.1 . 



 

 

 

 

 

 

 

 

 

Proposition 3.1 (Zonotopic observer structure) . Considering Assumptions 2.1 and 2.2 and the 
observer (5) , the center c and the shape matrix R of ˆ X can be recursively computed as

c + 

= (A − LC) c + Bu + Ly, (6a) 

R + 

= [(A − LC) ̄R E d 
]
, (6b) 

where E d =
[
E ω , −LE υ

]
and R̄ = ↓ q { R 

} . Moreover, the state inclusion property x ∈ 〈 c , R 〉
in Properties 3 and 4 holds for all k ≥0 .

Proof. Assume x ∈ 〈 c , R 〉 , ω ∈ 

〈
0, I n ω 

〉
and υ ∈ 

〈
0, I n υ

〉
for all k ≥0, where the inclusion prop-

erty is preserved by using the reduction operator, i.e., x ∈ 〈c, R̄ 

〉
. Thus, the state observer in

Eq. (5a) can be written using the set representation as 

x + 

∈ 

〈 c + 

, R + 

〉 = 〈(A − LC) c, (A − LC) ̄R
〉
� 〈 B u u, 0 

〉 � 〈 0, E ω 〉 � 〈 Ly, 0 

〉 � 〈 0, −LE υ〉 .
(7) 

Then, based on Definition 3 and Property 1 , c + 

and R + 

in Eq. (7) can be expressed as in
Eq. (6) . 

Consequently, considering Proposition 3.1 and assuming x ∈ 〈 c , R 〉 and υ ∈ 

〈
0, I n υ

〉
for all

k ≥0, the output prediction vector y in Eq. (5b) satisfies y ∈ 

〈
c y , R y 

〉 = 

〈
C c, C R̄ 

〉
� 〈 0, E υ〉 .

Thus, in healthy system operation, it can be written that 

c y = Cc, (8a) 

R y =
[
C R̄ E υ

]
. (8b) 

Mainly, a fault can be detected by generating the residual r = y − ˆ y . Therefore, using Eq.
(4b) and (8) , the residual zonotope can be computed as 

c r io = y − Cc, (9a) 

R r io =
[−C R̄ −E υ

]
. (9b) 

Hence, the FD test is based on checking the satisfaction of 0 / ∈ 

〈 c r io , R r io 〉 . The computa-
tional burden can be reduced to check whether 0 is inside or not of an aligned box enclosing
the zonotope 〈 c r io , R r io 〉 as

0 / ∈ 

〈 c r io , b(R r io ) 〉 , (10) 

where 〈 c r io , b(R r io ) 〉 is enclosed by an aligned box characterized as b(R r io ) = diag( | R r io | 1 ) .
Considering that |.| is the element-by-element absolute value operator, 1 is a column vector 
of ones and diag (.) returns a diagonal matrix from a vector of diagonal elements. In the case
of satisfaction of Eq. (10) , the existence of the fault will be detected. Otherwise, the system
is considered healthy. 

3.2. Set-invariance approach 

Generally speaking, given the system (4) and considering the observer (5) , the trajectories
of the residual will ultimately converge to an invariant set. Then, based on [32] and [29] , the
constructed RPI set in state space can be projected to the residual space and whenever the
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orresponding residual is inside this set, it will remain inside. Furthermore, the residual can
e generated as 

 = y − ˆ y = C ̃  x + E υυ, (11)

here ˜ x = (x − ˆ x ) is the state estimation error whose dynamics can be described using
qs. (4) and (5) as 

˜  + 

= (A − LC) ̃  x + E d d, (12)

here d = 

[
ω υ

]T 
.

According to [42] , the set Φ ˜ x is an RPI set for Eq. (12) if and only if, for all ω ∈ W and
∈ V,

A − LC) ̃  x + E d d ∈ Φ ˜ x . (13)

There is a large amount of reported results describing the construction of Φ ˜ x [30] . In this
aper, the Ultimate Bound (UB) method reported in [31] will be used in order to obtain the
PI set. Therefore, Φ ˜ x can be computed using Theorem 3.1 .

heorem 3.1. [31] consider the Jordan Conical form of matrix (A − LC) as J = V (A −
C) V 

−1 , where J is a diagonal matrix corresponding to the Jordan-normal form of (A −
C) and V is a non-singular transformation matrix. Thus, the state estimation error ˜ x in
q. (12) will ultimately converge within the polyhedral RPI set that is constructed as 

˜ x = { ˜ x ∈ R 

n x : | V 

−1 ˜ x | ≤ (I − | J | ) −1 | V 

−1 | d + ε 
}
, (14)

here ε can be any arbitrary small vector with strictly positive components. 

Therefore, Φ ˜ x can be computed straightaway using Theorem 3.1 . Then, considering ˜ x ∈ Φ x̃

nd υ ∈ V, the projection of ˜ x to a residual space, i.e., invariant set for the residual in Eq.
11) denoted by Φr , can be computed as 

r = CΦ ˜ x 
� V . (15)

According to [35] , if ˜ x ∈ Φ ˜ x , then r ∈ Φr . Therefore, the existence of the fault will be
etected based on the SIA whenever the satisfaction of the following condition is proved: 

 / ∈ Φr . (16)

. Characterization of Detectability and Isolability Properties

The main objective of this section is to combine IOA and SIA in order to exploit their
enefits and overcome their drawbacks. In particular, IOA will provide an on-line test that
an be applied in both transient and steady states response and SIA will allow to characterize
etectability and isolability properties in the steady state. 

.1. On-line propagation of the residual set 

Given the observer (5) and considering unknown but bounded uncertainties, two main
pproaches are presented in this paper to detect the fault: (i) IOA and ii) SIA. Each of them
as its own advantages and drawbacks. In the former approach, the FD principle leads to
etect the fault in both transient and steady-state operation of the system since its residual



 

 

 

 

 

 

 

 

 

 

 

 

generation is performed on-line. The latter approach only works in steady state since its
residual generation is performed off-line. 

Therefore, the most serious weakness of the SIA in comparison with the IOA is related
to its FDI limitation in transient state. On the other hand, one important feature of SIA
is the ability of providing both detectability and isolability properties in comparison with 

IOA. Therefore, the purpose of this paper is to propose an FDI approach based on IOA that
integrates IOA and SIA that can 

• be used during the whole time range (both transient and steady states), and
• guarantee both detectability and isolability properties.

According to [37] and [23] , the RPI set in SIA (see Section 3.2 ), can be alternatively
computed by recursive iteration of ˆ x . Thus, the dynamical model (4) and the zonotopic state
bounding observer in Proposition 3.1 can be used to obtain the zonotopic representation of
the state estimation error and consequently the RPI set. 

Coming back to the main issue discussed at the beginning of this section, it is now time
to compute the RPI set of the state estimation error. In this regard, Proposition 4.1 implies
that Φ ˜ x can also be represented as a zonotope.

Proposition 4.1 (Zonotopic representation of the RPI set for ˜ x ) . Consider a state estimation
error dynamics in Eq. (12) , the zonotopic RPI set of the state estimation error can be computed
as 

c ˜ x j+1 = (A − LC) c ˜ x j , (17a) 

R ˜ x j+1 =
[
(A − LC) R ˜ x j E d 

]
, (17b) 

where j ∈ N denotes the jth element of the set. Then, in the steady state, i.e., when j → ∞ ,
it can be written that 

c ˜ x ∞ 

= 0, (18a) 

∥∥∥R ˜ x ∞i 

∥∥∥
1 

= 

∥∥R ∞ i

∥∥
1 , (18b) 

where i denotes the ith row of the matrices. 

Proof. Consider the dynamical model of the state estimation error in (12) and assume that
the initial state estimation error ˜ x 0 belongs to the zonotopic set ˜ X 0 = 

〈
c ˜ x 0 , R ˜ x 0 

〉
that is defined

as an RPI set, since ˜ x ∈ 

〈 c ˜ x , R ˜ x 〉 , ω ∈ 

〈
0, I n ω 

〉
and υ ∈ 

〈
0, I n υ

〉
for all k ≥0, it can be written

that 

˜ x j+1 ∈
〈
c ˜ x j+1 , R ˜ x j+1

〉 = 

〈
(A − K C) c ˜ x j , (A − K C) R ˜ x j

〉
� 〈 0, E ω 〉 � 〈 0, −K E υ〉 (19) 

is another RPI set with arbitrarily expected precision enclosing the mRPI set of the state
estimation error in Eq. (12) . Thus, the center and the shape matrix of the set in Eq. (19) can
be unfolded as in Eq. (17) . 

Furthermore, the state estimation error will converge to the RPI set in steady state. Thus,
the RPI set of ˜ x can be computed by recursive propagation of the zonotopic set (17) starting
from the initial set ˜ X 0 = 

〈
c ˜ x 0 , R ˜ x 0 

〉
that belongs to the RPI set which can be computed using
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he any available method such as UB method recalled in Section 3.2 . Furthermore, it can be
tated that if j → ∞ (i.e., in steady state), the following conditions will be satisfied:

 ˜ x j+1 = c ˜ x j , (20a)

R ˜ x j+1

∥∥
1 

= 

∥∥R ˜ x j

∥∥
1 
. (20b)

Therefore, the same formulations as Eq. (18) for the center and the shape matrix of ˜ X can
e obtained by substitution of conditions (20) in (17) . 

Now, considering Proposition 4.1 , the zonotopic representation of the residual set in steady
tate can be computed by computing the projection of ˜ x into the residual space as

 r si = Cc ˜ x ∞ 

, (21a)

 r si = [CR ˜ x ∞ i 
E υ

]
. (21b)

Therefore, considering Proposition 4.1 , the residual set in steady state is invariant and can
e considered as a set that combines the polytopic UB method with the zonotopic iterative
pproximation. Then, when the system is working in either healthy or faulty modes, the
esidual set characterizing these modes can be computed. The benefit of generating the residual
n this way is to track the residual trajectories not only in steady state but also in transient
tate. Furthermore, in the case of having several types of faults, as long as the faulty and the
ealthy sets are separated, the proposed FDI approach will be able to work correctly. 

In the case of IOA, the fault is detected by testing the consistency of the obtained residual
ased on the current behavior of the system and a fixed threshold (ideally 0). On the other
and, in the case of SIA, the residual invariant set in the healthy operation of the system is
xed and determined off-line. Then, the fault is detected by means of checking the incon-
istency of the obtained residual of the current behaviour and the healthy residual set. Now,
onsidering the zonotopic representation of an RPI set using Proposition 4.1 and through its
terative capability to generate the residual set, both FD principles can be combined. That
s by using the same concept of SIA for FD test, that is based on checking if the obtained
esidual set belongs to healthy residual set of the system, instead of zero in the case of IOA.
he healthy residual set can be generated at each time instant and compared with the current

esidual set. In this regard, not only the fault can be detected in both steady and transient
tates but also the fault can be isolated since the separated invariant sets representing different
ehaviors of the system can be obtained. 

.2. Detectability and isolability conditions 

As mentioned before, the IOA can detect the fault in both transient and steady-state opera-
ion of a system. On the other hand, the FD test using the SIA can be applied only in steady
tate. But, in SIA, the invariant residual set that introduces the healthy operation of the system
s computed off-line. In this regard, both healthy and faulty residual sets can be separated
nd considering this separation, the fault can be both detected and isolated. Furthermore,
oth on-line and off-line analysis can be used to generate the invariant set characterizing the
esidual, i.e., 

 = y − ŷ
on-line 

= C(x − ˆ x ) + E υυ

off-line 

. (22)



Fig. 1. Graphical interpretation of the different actuator and sensors faults. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The proposed method suggested in Proposition 4.1 leads to compute the residual in an
on-line way. Therefore, after reaching the steady state, the computed residual set can be
considered as an invariant set that combines the polytopic UB expression with the zono- 
topic iterative approximation. Then, if the system is working in healthy operation, this set
introduces the healthy operation (that can be computed in both transient and steady states).
Alternatively, in the case of occurrence of the fault, the residual trajectories can be bounded
by another set that characterizes the faulty operation of the system. Then, the separation of
the healthy and fault sets is associated to a fault occurrence. Moreover, in the case of having
several faults such an observer is also be able to guarantee the isolability property. Given the
classical Luenberger interval observer (5) , it is possible to design one or several observers
using Proposition 4.1 to satisfy the separation of the healthy and faulty sets to guarantee both
detectability and isolability properties. 

In this paper, different actuator and sensor faults will be considered. Including their effect,
the dynamical model (4) can be rewritten as 

x + 

= Ax + Bu + E ω ω + F a f a , (23a) 

y = Cx + E υυ + F y f y , (23b) 

where vectors f a ∈ R 

n u and f y ∈ R 

n y denote the actuator and output sensor faults with their
associated matrices F a ∈ R 

n x ×n u and F y ∈ R 

n y ×n y , respectively. Furthermore, the other type of
fault that is considered in this paper is known as input sensor fault which effect is considered
on the input of the observer (5) as 

ˆ x + 

= A ̂  x + B ( u + F u f u ) + L(y − ˆ y ) , (24) 

where f u ∈ R 

n u represents the input sensor fault with its associated matrix F u ∈ R 

n u ×n u . In
addition, the considered faults can be classified into different categories depending on their 
locations as 

• actuator faults, which affect the system inputs,
• sensor faults that affect the measurements of the inputs and outputs of the system.

Figure 1 shows the schematic graphical interpretation of the different actuator and sensors
faults. 

Assumption 4.1. The additive faults represented in Eqs. (23) and (24) are assumed to be
bounded by a unit hypercube expressed as centered zonotopes, i.e., for all k ≥ 0, f • ∈
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〉
, where the subscript • can be respectively assigned to y , u or a associated with

he considered output sensor, input sensor and actuator faults, respectively. 

Furthermore, the dynamics of state estimation error in Eq. (12) can be rewritten in faulty
peration of the system as 

˜  + 

= (A − LC) ̃  x + E d d + F f , (25)

here 

 = [F a −LF y −BF u 
]
, (26a)

f = [ f a f y f u 
]T

. (26b)

emark 4.1. It is worth mentioning that, based on Assumption 4.1 , only one fault can be
onsidered at the same time in the observer structure 2 . Therefore, those elements of F and
 that are related to the given fault are retained and the remainder elements are eliminated,
.g., in the case of an actuator fault, F = 

[
F a 
]

and f = 

[
f a 
]
.

Considering f � = 0, the effect of the uncertainty and fault should be considered when com-
uting the zonotopic set bounding state estimation error that is defined in Proposition 4.2 . 

roposition 4.2. Consider the dynamical model (23) and the observer (24) , the decomposition
f the center c ˜ x and the shape matrix R ˜ x of the zonotopic set bounding the state estimation
rror in Eq. (25) into the effects of the disturbance and fault can be recursively defined as 

˜  + 

∈ 

〈 
c ˜ x d + , R ˜ x d + 

〉 
�

〈
c ˜ x f + , R ˜ x f + 

〉
, (27)

ith 

 ˜ x d + = (A − LC) c ˜ x d , (28a)

 ˜ x d + =
[
(A − LC) ̄R ˜ x d E d 

]
, (28b)

 ˜ x f + = (A − LC) c ˜ x f , (28c)

 ˜ x f + =
[
(A − LC) ̄R ˜ x f F 

]
, (28d)

here the subscripts d and f denote the effects of uncertainties (i.e., state disturbance and
easurement noise) and the fault, receptively. 

roof. Assume ˜ x ∈ 

〈
c ˜ x d , R ˜ x d 

〉
�
〈
c ˜ x f , R ˜ x f

〉
and consider Assumptions 2.1 and 4.1 , the zono-

opic form of the state estimation error in Eq. (17) can be expressed as 

 + 

∈ 〈(A − LC) c ˜ x d , (A − LC) R ˜ x d

〉
�
〈
(A − LC) c ˜ x f , (A − LC) R ˜ x f

〉
� 〈 0, E d 〉 � 〈 0, F 

〉 . (29)

Furthermore, consider that the superposition principle can be explicitly invoked in the linear
etting. Therefore, using Definition 3 , the center and the generator matrices in Eq. (29) can
e reorganized as in Eq. (28) . Thus, ˜ x + 

∈ 〈 c ˜ x d + , R ˜ x d + 〉 � 〈 c ˜ x f + , R ˜ x f + 〉 .
2 Further information on detection, isolation and estimation of multiple faults can be found in [43,44] . 



 

 

 

 

 

 

 

 

 

Consequently, the state estimation error can be projected into the residual space using 

Eq. (22) . Thus, Proposition 4.2 allows to derive the residual set decomposing the effects of
the disturbance and fault as 

c r d + = Cc ˜ x d + , (30a) 

R r d + =
[
CR ˜ x d + E υ

]
, (30b) 

c r f + = Cc ˜ x f + , (30c) 

R r f + =
[
CR ˜ x f + 

]
. (30d) 

Furthermore, the effects of the uncertainty and fault on the residual set can be known as
the residual sensitivity with respect to the uncertainty and fault. Therefore, this type of on-line
observer can be used in both transient and steady states to guarantee the fault detectability
and isolability in the case of satisfaction of conditions in Theorem 4.1 and 4.2 . 

Theorem 4.1 (Detectability condition) . Consider Definition 5 and the decomposed form of 
the residual set in Eq. (30) , the fault will be detected if 

s f •,l > s d u , (31a) 

s f •,u < s d l , (31b) 

with 

s f •,l =
(
C i c r f • − ∥∥C i R r f •

∥∥
1 

)+ 

(
C i c r d −

∥∥C i R r d

∥∥
1 

)
, (32a) 

s f •,u =
(
C i c r f • + 

∥∥C i R r f •

∥∥
1 

)+ 

(
C i c r d + 

∥∥C i R r d

∥∥
1 

)
, (32b) 

s d l = C i c r d −
∥∥C i R r d

∥∥
1 , (32c) 

s d u = C i c r d + 

∥∥C i R r d

∥∥
1 , (32d) 

where i corresponds to the i th row of the vector C. Moreover, s f l and s f u are the minimum and
the maximum values of the zonotope support strip in the faulty case, respectively. Furthermore,
s d l and s d u are the minimum and the maximum values of the zonotope support strip in the
healthy case, respectively. 

Proof. Consider (30) in faultless scenario, i.e., f • = 0, r ∈ 

〈
c r d , R r d 

〉
. But, in the case of faulty

operation of the system r /∈ 〈c r d , R r d 

〉
. Therefore, it can be written that〈

c r d , R r d 

〉
�
〈
c r f • , R r f •

〉
/ ∈ 

〈
c r d , R r d 

〉
. (33) 

Then, by computing the zonotope support strip using Definition 5 for the residual sets in
both healthy and faulty operations of the system, (33) will be obtained if the inequality in
Eq. (31) is satisfied. 

Theorem 4.2 (Isolability condition) . Consider the decomposed form of the residual set in
Eq. (30) and Definition 5 to compute the zonotope support strip, a necessary condition that
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hould be added to detectability condition in Theorem 4.1 in order to guarantee the isolation
f a fault f •p from a fault f •q is

 f •,l p 
> s f •,u q 

, (34a)

 f •,u p 
< s f •,l q 

, (34b)

with 

 f •,l p 
= C i c r f •p 

− ∥∥C i R r f •p

∥∥
1 , (35a)

 f •,u p 
= C i c r f •p 

+ 

∥∥C i R r f •p

∥∥
1 , (35b)

 f •,l q 
= C i c r f •q 

− ∥∥C i R r f •q

∥∥
1 , (35c)

 f •,u q 
= C i c r f •q 

+ 

∥∥C i R r f •q

∥∥
1 , (35d)

here s f •,l p 
and s f •,u p 

are the minimum and the maximum values of the zonotope support strip
n the case of occurrence of f •p , respectively. Furthermore, s f •,l q 

and s f •,u q 
are the minimum

nd the maximum values of the zonotope support strip in the case of occurrence of f •q ,

espectively. 

roof. The proof follows in the same way than Theorem 4.1 . Then, consider Eq. (30) and
31) , it can be written that f •p is isolable from f •q if

c r f •p 
, R r f •p

〉
/ ∈ 

〈
c r f •q 

, R r f •q

〉
. (36)

hus, Eq. (36) can be written using Definition 5 as Eq. (34) for the purpose of isolation of
f •p from f •q .

Up to now, the paper has focused on detectability and isolability of presented approach
uring both transient and steady states operations of the system. It is mentioned that the
etectability and isolability can be achieved in the case of satisfaction of the Theorems 4.1 and
.2 . Then, MDF and MIF can be characterized using the obtained conditions in the next
ection. 

.3. Characterization of MDF and MIF 

To characterize the MDF and MIF based on the obtained conditions in Theorems 4.1 and
.2 , the input-output form of the measurement y in Eq. (23) can be written as 

 = H u (q 

−1 ) u + H ω (q 

−1 ) ω + H υ (q 

−1 ) υ + H f a (q 

−1 ) f a + H f y (q 

−1 ) f y , (37)

ith 

 u (q 

−1 ) = Cξ1 (q 

−1 ) B, (38a)

 ω (q 

−1 ) = Cξ1 (q 

−1 ) E ω , (38b)

 υ (q 

−1 ) = E υ, (38c)

 f a = Cξ1 (q 

−1 ) F a , (38d)



 

 

 

 

 

H f y = F y , (38e) 

where ξ1 (q 

−1 ) = ( qI − A ) −1 .
On the other hand, the input-output form of the output prediction ˆ y in Eq. (5b) can be

expressed using the observer (24) as 

ˆ y = T u (q 

−1 ) u + T y (q 

−1 ) y + T f u (q 

−1 ) f u , (39)

with 

T u (q 

−1 ) = Cξ2 (q 

−1 ) B, (40a) 

T y (q 

−1 ) = Cξ2 (q 

−1 ) L, (40b) 

T f u (q 

−1 ) = Cξ2 (q 

−1 ) BF u , (40c) 

where ξ2 (q 

−1 ) = ( qI − (A − LC) ) −1 .
Then, the input-output form of the residual in Eq. (22) can be expressed using the shift

operator q 

−1 and considering Eqs. (37) and (39) as

r = G u (q 

−1 ) u + G d (q 

−1 ) d + G f (q 

−1 ) f , (41)

where the transfer function G u denotes the effect of input on the residual that can be obtained
as 

G u (q 

−1 ) = (I − T y (q 

−1 )
)
H u (q 

−1 ) − T u (q 

−1 ) , (42)

and G d =
[
G ω (q 

−1 ) G υ (q 

−1 ) 
]

shows the effect of uncertainties on the residual and can be
computed using 

G ω (q 

−1 ) = (I − T y (q 

−1 )
)
H ω (q 

−1 ) , (43a) 

G υ (q 

−1 ) = (I − T y (q 

−1 )
)
H υ (q 

−1 ) . (43b) 

Furthermore, the effect of the fault is G f • = [G f a (q 

−1 ) G f y (q 

−1 ) G f u (q 

−1 ) 
]

that can be
computed using 

G f a (q 

−1 ) = (I − T y (q 

−1 )
)
H f a (q 

−1 ) , (44a) 

G f y (q 

−1 ) = (I − T y (q 

−1 )
)
H f y (q 

−1 ) , (44b) 

G f u (q 

−1 ) = −T f u (q 

−1 ) , (44c) 

Then, considering input-output form of the residual in Eq. (41) and the detectability con-
ditions in Theorem 4.1 , the minimum magnitude of the fault that can be detected can be
characterized following Theorem 4.3 . 

Theorem 4.3 (Minimum Detectable Fault) . The MDF is characterized using conditions in 

(31) , Proposition 4.2 and the decomposed form of the residual set in Eq. (30) as 

f Det 
min • j, ∞ 

= max f Det 
min • ji, ∞ 

, f Det 
min • ji, ∞ 

= +2

∥∥G d i (1) 
∥∥

1 ∥∥∥G f •i j 
(1) 

∥∥∥
1 

, (45a) 
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f Det 
min • j, ∞

= min f Det 
min • ji, ∞ 

, f Det 
min • ji, ∞

= −2

∥∥G d i (1) 
∥∥

1 ∥∥∥G f •i j 
(1) 

∥∥∥
1 

, (45b)

here the superscript Det refers to the detectable fault and the factor 2 appears because the
orst-case scenario is considered, where the uncertainties have a maximum influence in the
pposite direction compared to that of the fault occurrence. The indices i and j refer to the
 

th row and j th column of the transfers G d and G f (residual sensitivity with respect to the
ncertainty and fault), respectively. 

roof. Based on Eq. (30) , in the time domain and in steady state (limit as k → ∞ ), r ∞ 

∈
c r d ∞ 

, R r d ∞ 

〉
�
〈
c r f ∞ 

, R r f ∞ 

〉
. On the other hand, considering f Det 

min • ∈ [ f Det 
min •, f Det 

min •] , it can be
ritten that 

f Det 
min • ∈ 

〈
c f Det

min •
, R f Det

min •

〉
, (46)

here c f Det
min •

and R f Det
min •

show the center and the shape matrix of the MDF zonotope, respec-
ively. Considering the worst-case scenario, the limit of the MDF can be understood as a
aximum and minimum value of its zonotope support strip that can be computed using

46) and Definition 5 . Therefore, the MDF is known as 

f Det 
min • j 

= max f Det
min • j 

= C i c f Det
min •

+ 

∥∥∥C i R f Det
min •

∥∥∥
1 
, (47a)

f Det 
min • j

= min f Det 
min • j

= C i c f Det
min •

−
∥∥∥C i R f Det

min •

∥∥∥
1 
. (47b)

Then, consider ω ∈ 〈0, I n ω 
〉

and υ ∈ 〈0, I n υ
〉
, in the steady state for the faulty case, i.e.,

 • � = 0, it is satisfied

 ∞ 

∈ 

〈 G u (1) u ∞ 

, 0 

〉 � 〈 0, G d (1) 〉 �
〈
G f • (1) c f Det

min •
, G f • (1) R f Det 

min •

〉
. (48)

Moreover, the decomposed form of the center and the shape matrix of residual zonotope
n steady state can be computed using Eq. (48) as 

 r d ∞ 

= G u (1) u ∞ 

, (49a)

 r d ∞ 

= [G d (1) 
]
, (49b)

 r f • , ∞ 

= G f • (1) c f Det 
min •

, (49c)

 r f • , ∞ 

=
[
G f • (1) R f Det

min •

]
, (49d)

here the subindex r d ∞ 

and r f ∞ 

show the residual sensitivity with respect to the effect of
ncertainty and fault in steady state, respectively. 

Now, consider Theorem 4.1 in the faulty operation of the system, i.e., satisfaction of the
etectability conditions in Eq. (31) , it can be stated that in steady state, the fault will be
etected if 

 f •,l, ∞ 

> s d u, ∞ 

, (50a)

 f •,u, ∞ 

< s d l, ∞ 

. (50b)



 

 

 

 

 

 

 

 

 

 

 

 

Then, consider Eq. (49) and Definition 5 , it can be written that 

s f •,l, ∞ 

= (C i c r f • , ∞ 

− ∥∥C i R r f • , ∞

∥∥
1 

)+ 

(
C i c r d ∞ 

− ∥∥C i R r d ∞ 

∥∥
1 

)
, (51a) 

s f •,u, ∞ 

= (C i c r f • , ∞ 

+ 

∥∥C i R r f • , ∞

∥∥
1 

)+ 

(
C i c r d ∞ 

+ 

∥∥C i R r d ∞ 

∥∥
1 

)
, (51b) 

s d l, ∞ 

= C i c r d ∞ 

− ∥∥C i R r d ∞ 

∥∥
1 , (51c) 

s d u, ∞ 

= C i c r d ∞ 

+ 

∥∥C i R r d ∞ 

∥∥
1 . (51d) 

Next, by considering the worst-case scenario, i.e., the residual is considered with the 
extreme value (it is located at either the lower or the upper bound of the zonotope support
strip of the considered threshold), it follows that the fault can be detected if (
C i c r f • , ∞ 

− ∥∥C i R r f • , ∞

∥∥
1 

)
> + 2 

∥∥C i R r d ∞ 

∥∥
1 , (52a) 

(
C i c r f • , ∞ 

+ 

∥∥C i R r f • , ∞

∥∥
1 

)
< − 2 

∥∥C i R r d ∞ 

∥∥
1 . (52b) 

Finally, the MDF can be characterized considering Eq. (47) and by substitution of residual
sensitivity (49) and Eq. (51) in Eq. (52) , which results in Eq. (45) . 

The condition in Theorem 4.1 is sufficient only for detecting the fault and the MDF,
which is characterized in Theorem 4.3 . Moreover, the fault can be isolated if the intersection
between the residual sets (computed based on different type of faults) is empty. Therefore, 
the condition in Theorem 4.2 should also be satisfied together with condition (31) in order
to guarantee both detection and isolation of the fault. 

Furthermore, using residual in Eq. (30) and condition in Theorem 4.2 , the minimum mag-
nitude of the fault that can guarantee both detection and isolation is characterized following
Theorem 4.4 . 

Theorem 4.4 (Minimum Isolable Fault) . The MIF of a fault f •p from a fault f •q is charac-
terized using the conditions in Theorems 4.1 and 4.2 , and also, considering the decomposed
form of the residual set in (30) as 

f Iso 
min •p j , ∞ 

= max f Iso 
min •p ji , ∞ 

, f Iso 
min •p ji , ∞ 

= +2

∥∥G d i (1) 
∥∥

1∥∥∥G f •p i j 
(1) 

∥∥∥
1 

+ 

∥∥∥G f •q i
(1) 

∥∥∥
1 ∥∥∥G f •p i j 

(1) 

∥∥∥
1 

, (53a) 

f Iso 
min •p j , ∞

= min f Iso 
min •p ji , ∞ 

, f Iso 
min •p ji , ∞

= −2

∥∥G d i (1) 
∥∥

1∥∥∥G f •p i j 
(1) 

∥∥∥
1 

+ 

∥∥∥G f •q i 
(1) 

∥∥∥
1 ∥∥∥G f •p i j 

(1) 

∥∥∥
1 

, (53b) 

where the superscript Iso refers to the isolable fault and the factor 2 appears because the
worst-case scenario is considered considering the effect of uncertainties d and fault f •q that
have a maximum influence in the opposite direction compared to that of the fault occurrence
f •p .

Proof. The proof follows a similar procedure than the one used in Theorem 4.3 . In this regard,
based on Eq. (30) , it can be written in the time domain and in steady state (limit as k → ∞ )
that r ∞ 

∈ 

〈
c r d ∞ 

, R r d ∞ 

〉
�
〈
c r f •p , ∞ 

, R r f •p , ∞ 

〉
in the case of occurrence of f •p . Moreover, r ∞ 

∈
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c r d ∞ 

, R r d ∞ 

〉
�
〈
c r f •q , ∞ 

, R r f •q , ∞ 

〉
in the case of occurrence of f •q . On the other hand, considering

f Iso 
min •p

∈ [ f Iso 
min •p 

, f Iso
min •p 

] , it can be written that 

f Iso 
min •p

∈ 

〈
c f Iso

min •p
, R f Iso

min •p 

〉
, (54a)

f Iso 
min •q

∈ 

〈
c f Iso

min •q
, R f Iso

min •q

〉
, (54b)

here c f Iso 
min •p

, R f Iso 
min •p

and c f Iso 
min •q

, R f Iso 
min •q

show the center and the shape matrix of the MIF

onotope in the case of occurrence of the f •p and f •q , respectively. Furthermore, considering
he isolability condition in Theorem 4.2 , in the case of occurrence of f •p , i.e., f •p � = 0, and
hen k → ∞ , it can be derived that 

 ∞ 

∈ 

〈 G u (1) u ∞ 

, 0 

〉 � 〈 0, G d (1) 〉 �
〈
G f •p 

(1) c f Iso
min •p

, G f •p 
(1) R f Iso

min •p

〉
. (55)

n the other hand, for the case of occurrence of f •q , it is satisfied

 ∞ 

∈ 

〈 G u (1) u ∞ 

, 0 

〉 � 〈 0, G d (1) 〉 �
〈
G f •q 

(1) c f Iso
min •q

, G f •q 
(1) R f Iso

min •q

〉
. (56)

ow, the residual sensitivity with respect to the effect of uncertainties in steady state can be
btained as in Eq. (49a) and (49b) . Furthermore, the residual sensitivity with respect to the
ffect of faults f •p and f •q in steady state can be computed as

 r f •p , ∞ 

= G f •p 
(1) c f Iso

min •p
, (57a)

 r f •p , ∞ 

=
[
G f •p 

(1) R f Iso
min •p

]
, (57b)

 r f •p , ∞ 

= G f •q 
(1) c f Iso

min •q
, (57c)

 r f •q , ∞ 

=
[
G f •q 

(1) R f Iso
min •q

]
. (57d)

Besides, the isolability condition in Eq. (34) can be rewritten during steady state as 

 f •,l p , ∞ 

> s f •,u q , ∞ 

, (58a)

 f •,u p , ∞ 

< s f •,l q , ∞ 

, (58b)

here 

 f •,l p , ∞ 

=
(
C i c r f •p , ∞ 

−
∥∥∥C i R r f •p , ∞ 

∥∥∥
1 

)
+ 

(
C i c r d ∞ 

− ∥∥C i R r d ∞ 

∥∥
1 

)
, (59a)

 f •,u p , ∞ 

=
(
C i c r f •p , ∞ 

+
∥∥∥C i R r f •p , ∞ 

∥∥∥
1 

)
+ 

(
C i c r d ∞ 

− ∥∥C i R r d ∞ 

∥∥
1 

)
, (59b)

 f •,l q , ∞ 

=
(
C i c r f •q , ∞ 

−
∥∥∥C i R r f •q , ∞ 

∥∥∥
1 

)
+ 

(
C i c r d ∞ 

− ∥∥C i R r d ∞ 

∥∥
1 

)
, (59c)

 f •,u q , ∞ 

=
(
C i c r f •q , ∞ 

+
∥∥∥C i R r f •q , ∞ 

∥∥∥
1 

)
+ 

(
C i c r d ∞ 

− ∥∥C i R r d ∞ 

∥∥
1 

)
. (59d)

Then, by considering the worst-case scenario for both uncertainties and the considered fault
here f •q ) with respect to the other faults (here f •p ), the isolability condition can be rewritten
s

C i c r f •p , ∞ 

−
∥∥∥C i R r f •p , ∞ 

∥∥∥
1 

)
> 

(
C i c r f •q , ∞ 

+
∥∥∥C i R r f •q , ∞ 

∥∥∥
1 

)
, (60a)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

(
C i c r f • , ∞ 

+ 

∥∥C i R r f • , ∞

∥∥
1 

)
< 

(
C i c r f •q , ∞ 

−
∥∥∥C i R r f •q , ∞ 

∥∥∥
1 

)
. (60b) 

Finally, the MIF can be characterized considering Eq. (54) and by substitution of the
residual sensitivity with respect to disturbances (49a), (49b) and the residual sensitivity with 

respect to faults (57) in Eq. (60) results in Eq. (53a) . 

The minimum magnitude of the fault that establishes if a fault is detectable and isolable
according to Theorems 4.3 and 4.4 . Therefore, it can be written that in the case of satisfaction
of both conditions in Eqs. (31) and (34) , the fault can be detected and isolated. Furthermore,
another possible manner to guarantee both detection and isolation at the same time can be
achieved by considering Eq. (60) . This condition shows that the isolation of the fault depends
on the direction of vector C . Thus, in the case of having the occurrence of the faults in
different directions, the fault can be isolated with the same magnitude of the MDF. In this
regard, further analysis of the approaches will be discussed in Section 5 based on a case
study. 

5. Case study

5.1. System description 

The proposed FDI scheme will be tested using a two-tank system based on the well-known
benchmark proposed in [45] . A schematic of the system can be seen in Fig. 2 . 

The input of the two-tank system is the pump flow rate that is determined when applying
voltage v of the pump. Therefore, the action of the pump is to pour the tanks by extracting
the water from the basin. Moreover, Tank 1 is placed below Tank 2. Furthermore, the outputs
of the process are the water levels in both upper and lower tanks that are obtained as voltages
from the measurement devices. 
Fig. 2. Schematic diagram of the Two-tanks system. 



 

t  

a  

d  

t
a  

a
 

c  

s  

[  

p

w

h
t

h  

y  

w

a
2

 

s

h  

y  

w  

a  
Additionally, Tank 1 is being affected by an additional disturbance ω that is generated by
he uncertain position of the valve γ that can vary between 0 and 1 based on experimental
pparatus, i.e., the position of the valve is the ratio modeling how the output of the pump is
ivided between upper and lower tanks. Thus, the water flow to each tank is controlled by
he position of the valve considered as γ ∈ (0, 1). Furthermore, both upper and lower tanks
re made from Plexiglas tubes with the height of 20 cm that are connected by the pipe with
 diameter of 6 cm. 

Since all the mathematical developments in previous sections were obtained based on the
onsideration of a linear dynamic system, the linearized model of the considered two-tank
ystem is used to illustrate the effectiveness of the characterized formulations. According to
45] , the two-tank model is linearized around a working point. The considering operating
oint is denoted using the superscript ∗ and selected as

• h 

∗
1 = 12. 4 cm,

• h 

∗
2 = 1 . 8 cm,

• v ∗ = 3 . 00 V,

ith the following parameter values: 

• K p = 3 . 35 cm 

3 /Vs,
• γ = 0. 60.

Hence, the following linearized model can be written by introducing the variables ˜ h i =
 i − h 

∗
i and ˜ v = v − v ∗, where h i is the level of the water in Tank i , with i = 1 . 2 and v is

he velocity of the water flow through the pump: 

˙ ˜ 
 t =

⎡
⎢⎣− 1 

T 1 

A 2 

A 1 T 2 
0 − 1 

T 2 

⎤
⎥ ⎦ ̃

 h t +

⎡ 

⎢ ⎣
γ K p 

A 1 
0 

0 

(1 − γ ) K p

A 2 

⎤
⎥ ⎦ ̃

 v t , (61a)

 t =
[
K c 0 

]˜ h t , (61b)

here K c is measured laboratory parameter. Moreover, T i = 

A i 

a i 

√
2h 

∗
i 

g 

with i = 1 , 2.

According to [45] , the parameters of the model in Eq. (61) are A 1 = A 2 = 28 cm 

2 , a 1 =
 2 = 0. 071 cm 

2 , K c = 0. 50 V/cm and g = 981 cm/s 2 . Therefore, T 1 = 62. 7034 s and T 2 =
3 . 8900 s. 

Using the Euler discretization with a sampling time of 1s, the linearized model of this
ystem can be written in the state-space form as 

˜ 
 + 

= A ̃

 h + B ̃  v + E ω ω, (62a)

 = C ̃

 h + E υυ, (62b)

here A =
[

0. 9842 0. 0407
0 0. 9590

]
, B =

[
0. 0007
0. 0352

]
and C =

[
0. 5 0 

0 0. 5 

]
. Furthermore, taking into

ccount the state disturbance and the measurement noise, E ω and E υ are simulated in
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Fig. 3. State estimation in healthy operation of the system. 

 

 

 

 

 

 

 

 

 

 

 

Eq. (62) with 

E ω =
[

0. 05 0 

0 0. 05

]
, E υ =

[
0. 01 0 

0 0. 01

]
. (63) 

As it can observed in Eq. (63) , E ω is used to define a disturbance influencing all the states
and the measurement noise affecting both outputs is modeled through E υ . 

Based on Eq. (62) , the output y is the voltage obtained from the level sensor. Hence,
considering the physical features of the two-tank system, the range of the measured output 
is [0, 10] V since the height of the each tank is from 0 cm up to 20 cm and K c = 0. 5 V/cm .
Moreover, based on linear model in Eq. (61) , the incremental value of the measured output
around the working point is in the range of 4 V to 8 V (or 8 cm to 16 cm). 

5.2. Performing FDI 

5.2.1. Healthy operation of the system 

The first step of the proposed FDI approach is to obtain the state estimation. In this
regard, the additive uncertainties ( ω and υ) are assumed unknown but bounded based on the
zonotopic definition of a set during the simulations as in (3) . Fig. 3 shows the projection of
the computed state-bounding zonotope into the state-space when the system is working in its
healthy mode. 

As discussed in Sections (3.1) and (3.2) , there are two different approaches for bounding
the effect of uncertainty in the residual. On the one hand, the on-line IOA that is able to
generate the residual set in both transient and steady states. On the other hand, the SIA
that is an off-line procedure to compute the residual set in steady state (see (22) ). Fig. 4



Fig. 4. On-line propagation of residual set using zonotopic IOA during transient state and healthy operation of the 
system. 
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resents the residual set based on on-line IOA that is obtained from the transient operation of
he healthy system. The obtained residual zonotopes at time instants k = 1 , k = 10, k = 20,

 = 30, k = 40 and k = 50 are shown in Figure 4 for the healthy functioning of the system
n Eq. (62) . From the results in Fig. 4 , it can be seen that the residual generated using the
roposed on-line zonotopic observer (the green zonotopes) ultimately converges to the one
hat is represented by the black solid line. 

Based on the system description, outputs of the considered two-tank system are the water
evel in both upper and lower tanks. Therefore, the residual zonotopic set can be generated
s a plane zonotope (2D zonotope) at each time step, where r 1 and r 2 denote the difference
etween the predicted values of the ˜ h 1 and 

˜ h 2 with their real measured values given by the
ensor, respectively. 

From the results in Fig. 4 , it can be observed that the residual generated by an on-line
onotopic observer is also converging to the one that is shown in Fig. 5 , which can be
onsidered as an RPI set for the residual. Furthermore, Fig. 5 shows the obtained residual set
rom the SIA based on (14) . 

What is interesting in Fig. 5 is related to the comparison of the residual zonotopes obtained
ased the off-line and on-line approaches. A comparison of the two results reveals that no
ignificant differences were found between the size of the residual zonotopes in steady state.
herefore, the obtained RPI set for the residual based the proposed on-line zonotopic IOA is
onfirmed by the use of SIA. Furthermore, it is true that the difference between the computed
PI set is not significant but the size of the RPI set that is computed on-line is a bit tighter

han the one computed off-line. Thus, it can be considered that the off-line SIA is more
onservative than the on-line IOA since the RPI set is computed off-line. This result may be
xplained by the fact that the iterative propagation of the uncertainties in zonotopic IOA is
ore accurate than the off-line computation procedure. Furthermore, the mathematical burden

s increased using the on-line approach but it allows obtaining a more accurate result. 



Fig. 5. Comparison of the residual set using on-line and off-line approaches in steady state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This section presents the analysis of the system in healthy operation. The next step is to
test the proposed so-called on-line IOA during the faulty case. 

5.2.2. Faulty operation of the system 

Following Section 4 , the MDF can be computed using Theorem 4.3 for different types of
actuator and sensor faults. The effect of faults on the state and the measurements are modeled
through the components of matrix F in Eq. (26) . Furthermore, in order to analyze the effect
of different type of faults on the system, actuator and sensor faults are simulated, separately.

In the first simulation, the actuator fault is considered. In this regard, the position of the
valve is controlled by using the electrical actuator. As it is explained in the description of the
case study, the position of the valve during the experiment is related to the flow parameter γ
in the range between [0, 1]. Thus, the flow to the lower and upper tanks is influenced by the
valve position through γ K p ω and (1 − γ ) K p v, respectively. To simulate the single actuator
fault, faulty dynamical model (23) is considered as 

x + 

= Ax + Bu + E ω ω + F a f a , (64a) 

y = Cx + E υυ. (64b) 

From (64) , it can be observed that system is affected by the actuator fault through matrix
F a and the vector f a , i.e., 

F a = 10B, f a =
[

f a 
]
, (65) 

where matrix F a is selected to simulate the actuator fault. Moreover, f a denotes the direction
of the fault effect on the actuator. Then, considering all the details mentioned regarding to
the system simulation and simulation of the actuator fault, Theorem 4.3 can be used in order
to compute the MDF. Therefore, the minimum magnitude of the actuator fault that can be
detected is obtained using Eq. (45) . Thus, the MDF in the case of actuator fault is computed
during steady-state operation of the system as 

f Det 
min a = ±0. 3310. (66) 



Fig. 6. FD results in the case of occurrence of the actuator fault during steady state, i.e., k = 500. 
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To test the obtained magnitudes, the occurrence of the fault is simulated at k = 500, which
imulates the fault in steady state. Furthermore, based on the description of the case study,
he flow parameter is considered as γ = 0. 6 .

In this regard, the two following scenarios for a single step additive actuator fault are
onsidered in steady state: 

• scenario (i): f a = 0. 3330, i.e, slightly bigger than the magnitude f Det 
min a = ±0. 3310,

• scenario (ii): f a = 0. 3280, i.e, slightly smaller than the magnitude f Det 
min a = ±0. 3310.

Fig. 6 shows the FD test results for both scenarios. As it can be seen in Fig. 6 , the residual
ets obtained in healthy and faulty operation are separated in the case of fault occurrence
onsidering the first scenario. Therefore, the fault can be detected. But, considering the second
cenario, the overlap between the healthy and faulty residual sets means the fault with the
onsidered magnitudes is not detectable. 

Further analysis is carried out for the case of actuator fault at k = 500 by projecting the
aulty residual set into each residual space as can be seen on the left side of the Fig. 6 . It
an be observed that the threshold, i.e., ideally in classical IOA is considered zero, is out
f the area between the upper and lower bounds of the residual set in Fig. 6 a. Then, the
xistence of the fault will be proved. On the other hand, the threshold is between the area of



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the maximum and minimum bounds of the residual set in Fig. 6 b, where the second scenario
is considered for the fault magnitude. Therefore, the fault with the magnitude f a < 0.3310 is
not detectable. Hence, Fig. 6 confirms through simulations the obtained results in (66) . This
illustrates that proposed on-line zonotopic IOA is well suited to the fault detectability of the
classical IOA. 

Remark 5.1. The healthy zonotopic set that is shown in Figs. 4 and 5 is obtained without
considering the reduction operator ↓ q since the computational burden is not to much for
this case study. But, in the faulty operation of the system since the computational burden is
increased, the reduction operator ↓ q is used to fix the dimension of the generator matrices with
the maximum value. Due to this reason, the healthy residual set that is shown in Figs. 5 and
6 are not exactly the same. 

Moreover, the MDF analysis is done considering the output sensor fault. In this regards, 
the faulty dynamical model (23) is considered as 

x + 

= Ax + Bu + E ω ω, (67a) 

y = Cx + E υυ + F y f y . (67b) 

As mentioned in the description of the case study, the outputs of the system are the water
levels in Tanks 1 and 2 that can be measured using the measurement devices as voltages.
Based on the physical features, the height of each tank is 20 cm. Then, each output of the
system is between [0 10] V since K c = 0. 50 V/cm. To simulate the output sensor fault, the
terms F y and f y in Eq. (67) is considered in the simulation as 

F y =
[

10 0 

0 10 

]
, f y =

[
f y 1 
f y 2

]
, (68) 

where the matrix F y is defined with the whole range of the measurement. Moreover, f y 1 and
f y 2 present the influence of the fault on each output. Then, the minimum magnitude of the
sensor fault that can be detected can be computed based on Theorem 4.3 . Using Eq. (45) ,
the minimum magnitude of the output sensor fault that can be detected is computed during
steady-state operation of the system as 

f Det 
min y = 

[±0. 2575 V
±0. 0082 V

]
. (69) 

As further analysis, the occurrence of the output sensor fault is separately simulated at
k = 500, in order to test the obtained magnitude during steady state. Furthermore, based on
the description of the case study, the operating points that are considered for the water levels
of the Tanks 1 and 2 are around 12.4 cm (or 6.2 V) and 1.8 (or 0.9 V), respectively. Then, the
FD test is done considering the following scenarios for a single step additive output sensor
fault are considered during steady state: 

• slightly bigger than the magnitude f Det 
min y = 

[±0. 2575 V
±0. 0082 V 

]
, 

• slightly smaller than the magnitude f Det 
min y = 

[±0. 2575 V
±0. 0082 V

]
. 

Following the explained scenarios, there are four different magnitudes to be tested on each 

sensor as 



Fig. 7. FD results in the case of occurrence of the sensor fault ( f y 1 ) during steady state, i.e., k = 500. 
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◦ scenario (i): f y 1 = 0. 2580 V , i.e, slightly bigger than the magnitude f Det 
min y 1

= ±0. 2575 V ,

◦ scenario (ii): f y 1 = 0. 2570 V , i.e, slightly smaller than the magnitude f Det 
min y 1

= ±0. 2575 V ,

◦ scenario (iii): f y 2 = 0. 0084 V , slightly bigger than the magnitude f Det 
min y 2

= ±0. 0082 V ,

◦ scenario (iv): f y 2 = 0. 0080 V , slightly smaller than the magnitude f Det 
min y 2

= ±0. 0082 V .

It is worth mentioning that subscripts 1 and 2 denote the effect of the fault on the sen-
or that is measuring the water level of Tanks 1 and 2, respectively. The results from the
mplementation of the scenarios are reported in Figs. 7 and 8 . 

Looking at Figs. 7 and 8 , it can be observed that separation of the healthy and faulty resid-
al sets is obtained when slightly bigger faults than the magnitudes obtained in Eq. (69) are
onsidered and the existence of the fault can be detected by means of the obtained separa-
ions. Considering the second scenario, which corresponds to a fault slightly smaller than the
btained magnitudes in Eq. (69) is considered, the fault can not be detected since the healthy
nd faulty residual sets overlap. Furthermore, it can be seen that the threshold, i.e., zero, is
ut of the area between the upper and lower bounds of the residual set when implementing
he first scenario of the two cases. Then, this is an indication of the occurrence of the fault.

oreover, threshold is inside of the area between the upper and lower bounds of the faulty
esidual set when implementing the second scenario of the two cases and it can be considered



Fig. 8. FD results in the case of occurrence of the sensor fault ( f y 2 ) during steady state, i.e., k = 500. 

 

 

 

 

 

 

 

that the fault with this magnitude is not detectable. Thus, Figs. 7 and 8 confirm through the
simulation the obtained results previously presented in Eq. (69) . 

The last simulation that is considered for the case study is related to the case of input
sensor fault. As mentioned before, the input sensor fault is a type of the fault that the input
of the observer is influenced by the fault (see Eq. (24) ). The simulation of the input sensor
fault is carried out through the matrix F u and the vector f u , i,e., 

F u = 5 , f u = f u , (70) 

where matrix F u is defined with the whole range of the input which is between [0, 5] V.
Furthermore, f u denotes the effect of the fault influencing observer input. Then, the minimum
magnitude of the input sensor fault is computed using Theorem 4.3 as 

f Det 
min u = ±0. 6620 V . (71) 

Similar to the actuator and output sensor faults, the MDF in the case of input sensor fault
is obtained during steady-state operation of the system. Then, regarding the FD performance 
in this case, the fault is simulated at k = 500 to illustrate the steady state. Furthermore, the
following scenarios are considered for the implementation of the FD test: 

• scenario (i): f u = 0. 6640 V , slightly bigger than the magnitude f Det 
min u = ±0. 6620 V ,



Fig. 9. FD results in the case of occurrence of the input sensor fault during steady state, i.e., k = 500. 
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• scenario (ii): f u = 0. 6600 V , slightly smaller than the magnitude f Det 
min u = ±0. 6620 V .

Fig. 9 shows the FD test considering the mentioned scenarios during steady state for the
ase of input sensor fault. As can be seen in Fig. 9 , considering the input sensor fault with
igger magnitude reported in (71) , the separation of the healthy and faulty residual sets is
btained. Thus, the existence of the fault is proved. Also, the obtained overlap between the
ealthy and faulty residual sets when considering output sensor fault with smaller magnitude
s presented in Fig. 9 corresponding to the magnitude that cannot be detected in steady state.

Further analysis is done by projecting the residual set into each residual space. It can be
een from the left side of the Fig. 9 , when the first scenario is simulated, zero is out of the
rea between the upper and lower bounds of the residual set. Then, the fault will be detected.
n the other hand, when the second scenario is simulated, zero is inside of the area between

he upper and lower bounds of the residual set. Then, the fault cannot be detected. 
Furthermore, Table 1 summarizes the obtained MDF in all the cases (actuator and sensor

aults) using Theorem 4.3 . Furthermore, those magnitudes of the fault that can be still detected
t the end of the simulation, i.e., in steady state is obtained using the simulation and reported
n Table 1 . 

From Table 1 , the magnitude of the fault that can be detected considering the whole
ime range of the simulation is almost the same as the one obtained based on the theoretical



Table 1 
MDF during steady-state operation of the system. 

Actuator fault Output sensor fault Input sensor fault 

f Det 
min a

f Det 
min y 1 

[ V ] f Det 
min y 2 

[ V ] f Det 
min u 

[ V ]

Theoretical ±0.3310 ±0.2575 ±0.0082 ±0.6620 
Simulation ±0.3200 ±0.2900 ±0.0078 ±0.6900 

Fig. 10. Always separable (ISF and OSF (II) denote the residual set when simulation input sensor fault f u and output 
sensor fault f y 2 , respectively). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

approach. However, in the case of sensor fault and due to the re-injection of the fault involved
by the observer structure leading to some transient behavior (see the overshoot in Figs. 7 and
8 ), the magnitude of the detectable fault is improved on the whole time range of the simulation
compared to steady state only. 

As it is mentioned before, the fault with the magnitude obtained using Theorem 4.3 is
only related to the detectability analysis and this magnitude of the fault is not valid in the
case of isolability analysis. After detecting the fault by means of obtaining the separated sets
in healthy and fault operation of the system, the isolation of the fault depends on satisfaction
of the conditions in Theorem 4.2 . In this regard, the magnitude of the different faults that are
obtained using MIF analysis in Theorem 4.4 for the case study are reported on Table 2 . 

It can be seen from the results that are presented in Table 2 , there are some cases that do
not exist in the considered case study. These cases are denoted by − in Table 2 . Furthermore,
there are some other cases that the faults always can be isolable if they are larger than the
MDF magnitude. These cases are shown by # in Table 2 . A possible explanation for having
# might be related to the direction of the fault in the case study that always there are some
faults with the different directions, e.g., minimum isolable input sensor fault with respect to
the output sensor fault. In these cases, after obtaining the separation between the healthy and
faulty sets, the faulty sets are also separated. Fig. 10 illustrates one of the cases that always
can be isolable with MDF magnitude since the direction of the faults are always different for
the considered case study. 



Fig. 11. FD results when the obtained magnitude using MDF is considered for the case of occurrence of f y 2 and f a 
at the same time (AF denotes the residual set when simulation actuator fault f a ). 
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The implementation of the fault is done using the magnitudes that are obtained based
n Theorem 4.3 and reported in Table 1 as f u = 0. 6640 V that is slightly bigger than the
agnitude f Det 

min u = ±0. 6620 V for the case of occurrence of f u and f y 2 = 0. 0084 V that is
lightly bigger than the magnitude f Det 

min y 2 
= ±0. 0082 V for the case of occurrence of f y 2 . As

an be seen in Fig. 10 , the occurrence of the input sensor fault f u and output sensor fault f y 2
re always separable by the magnitude that is obtained based on Theorem 4.3 . 

However, the overlap can be obtained between the faulty residual sets in some cases
mplementing the fault with the obtained magnitude in Table 1 . Fig. 11 illustrates one of the
ases, e.g., the case of occurrence f y 2 and f a at the same time.

In this case, the fault magnitudes are considered f a = 0. 3330 that is slightly bigger than
f Det 
min a = ±0. 3310 and f y 2 = 0. 0. 0084 V that is slightly bigger than f Det 

min y 2 
= ±0. 0082 V for

he case of occurrence of f a and f y 2 , respectively. Fig. 11 shows that the separation between
he faulty sets cannot be obtained when the occurrence of the faults are simulated with the

agnitudes reported in Table 1 . 
Then, the magnitudes that are obtained in Table 2 are implemented in the simulation for

he considered cases: f y 2 = 0. 009 V and f a = 0. 35 . Therefore, as can be seen in Fig. 12 , the
ault with the magnitude using Table 2 can be not only detectable, but also, can be isolable
ince the intersection between the faulty residual sets are obtained empty and the faulty sets
re separated from each other and the healthy residual set. 

Further analysis is done based on the simulation of the case of occurrence of all type of
ossible faults for the case study by considering slightly bigger magnitudes than the maximum
IF for the faults obtained in Table 2 as 

f a = 0. 35 ,

f y 1 = 0. 29 V ,

f y 2 = 0. 0095 V ,

f u = 0. 73 V .



Fig. 12. FD results when the obtained magnitude using MIF is considered. 

Fig. 13. FD results when the maximum magnitude that obtained using MIF analysis in Table 2 for each type of 
faults is simulated. 

Table 2 
MIF during steady-state operation of the system. 

f a f y 1 [ V ] f y 2 [ V ] f u [V] 

f Iso 
min a

− # # ±0.3460 
f Iso 
min y 1

±0.2808 − # ±0.2691 

f Iso 
min y 2

±0.0089403 ±0.008571 − ±0.0085701 

f Iso 
min u

±0.7219 # # −

 

 

Figure 13 presents the case of occurrence of the fault with the maximum value obtained in
Table 2 , all type of faults are perfectly separated. This case correspond to a fault magnitudes
that properly detectable and isolable. 
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. Conclusions

This paper has proposed a zonotopic interval observer-based Fault Detection and Isolation
FDI) algorithm integrated with the set-invariance approach. As a novelty, in the proposed FDI
esign, fault detectability and fault isolability can be guaranteed in both transient and steady
tates. The influences of all possible state disturbance and measurement noise are addressed
sing the zonotopic-set representation of a set. Furthermore, Minimum Detectable Fault (MDF)
nd Minimum Isolable Fault (MIF) have been characterized based on the sensitivity analysis
ntegrated with set-invariance approach. Finally, a case study based on two-tank system is
sed to illustrate the obtained results. As a future research, the effect of the observer gain and
he influence of the input over the state-bounding observer will be further analyzed in order to
mprove the algorithm for enhancing the sensitivity to the fault with respect to the influence
f disturbance with the goal of improving the FDI performance. Moreover, the proposed FDI
pproach will be extended to deal with the case of multiple simultaneous faults. 
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ppendix 

efinition 1 (Vector s-norm) . The s-norm of a vector ‖ x ‖ s for s = 1 , 2, . . . , n is defined as

 x ‖ s =
⎛
⎝ n ∑ 

j=1 

∣∣x j ∣∣s 
⎞ 

⎠
1
s

. (72)

efinition 2 (Zonotope) . A zonotope 〈 c z , R z 〉 ⊂ R 

n with the center c ∈ R 

n and the generator
atrix R ∈ R 

n×p is a polytopic set defined as a linear image of the unit hypercube [ −1 , 1] n :

 c z , R z 〉 = 

{ c z + R z s, ‖ s ‖ ∞ 

≤ 1 

} . (73)

oreover, a centered zonotope is denoted by 

〈 R z 〉 = 

〈 0, R z 〉 . Any permutation of the columns
f R leaves it invariant. 

efinition 3 (Minkowski sum) . Considering two sets A and B, their Minkowski sum is a set
efined as A � B = 

{ a + b| a ∈ A , b ∈ B 

} . Furthermore, the Minkowski sum of the zonotopes
 1 = 

〈
c z 1 , R z 1 

〉
and Z 2 = 

〈
c z 2 , R z 2 

〉
is Z 1 � Z 2 = 

〈
c z 1 + c z 2 , 

[
R z 1 , R z 2 

]〉
.

efinition 4 (Interval hull) . Interval hull of a given zonotope Z = 

〈 c z , R z 〉 is the smallest
nterval box that contains Z and it is denoted by Z .

efinition 5 (Zonotope support strip) . given zonotope Z = 

〈 c z , R z 〉 and a vector C , the zono-
ope support strip is introduced by S = z : s d ≤ C i z ≤ s u , where i denotes the i -row of the

https://doi.org/10.13039/501100011033
https://doi.org/10.13039/501100008530
https://doi.org/10.13039/501100002809
https://doi.org/10.13039/501100003030


 

 

 

 

 

 

 

 

vector C . Furthermore, s d and s u should satisfy s d = min z∈Z 

C i z and s u = max z∈Z 

C i z and they
can be computed as 

s d = C i c z + 

∥∥C i R 

� 

z 

∥∥
1 , (74a) 

s u = C i c z −
∥∥C i R 

� 

z 

∥∥
1 . (74b) 

Definition 6 (Invariant set) . The invariant set Ω ⊆ Z is the set which its existence allowed
the evolution of a constrained system, where z 0 ∈ Ω ⊆ Z and then, z K ∈ Ω ⊆ Z for all time
steps k . 

Property 1 (Linear image) . The linear image of a zonotope Z = 

〈 c, R 

〉 by a compatible
matrix L is L � 〈 c, R 

〉 = 

〈 L c, L R 

〉 .
Property 2 (Reduction operator) . A reduction operator denoted ↓ q permits to reduce the
number of generators of a zonotope 〈 c , R 〉 to a fixed number q while preserving the inclusion
property 〈 c , R 〉 ⊂〈 c , ↓ q { R } 〉 . A simple yet efficient solution to compute ↓ q { R } is given in [46] .
It consists in sorting the columns of R on decreasing Euclidean norm and enclosing the
influence of the smaller columns only into an easily computable interval hull, so that the
resulting matrix ↓ q { R } has no more than q columns.

Property 3 (Zonotope inclusion) . Given a zonotope Z = 

〈 c, R 

〉 ⊂ R 

n , with a vector c ∈
R 

n denoting the center and an interval matrix R ∈ R 

n×m (n ≤ m) denoting the shape of the
zonotope, a zonotope inclusion indicated by �( Z ) is defined as �( Z ) = 〈c, [mid(R) , S

]〉
, 

where S is a diagonal matrix that satisfies S ii = 

∑ m 

j=1

diam(R i j ) 

2 

, i = 1 , 2, . . . , n, with mid (.)

and diam (.) are the center and diameter of interval matrix, respectively. 

Property 4 (State zonotope inclusion) . Given X k+1 = A X k � Bu k , where A and B are interval
matrices and u k is the input at time instant k , considering X k as a zonotope with the center
c x , k and the shape matrix R x , k such X k = 

〈
c x,k , R x,k 

〉
, the zonotopic state at the next time

instant k + 1 defined as X k+1 is bounded by a zonotope X 

e 
k+1 = 

〈
c x,k+1 , R x,k+1 

〉
, with 

c x,k+1 = m id(A ) c x,k + m id(B) u k ,

R x,k+1 =
[
�(AR x,k ) ,

diam(A ) 

2 

c x,k , 
diam(B) 

2 

u k 

]
, 

where �( AR x , k ) shows the shape matrix of the state bounding zonotope.
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