
Improving Performance of QUIC in WiFi

Jawad Manzoor∗, Llorenç Cerdà-Alabern†, Ramin Sadre∗ and Idilio Drago‡
∗Université Catholique de Louvain

{jawad.manzoor,ramin.sadre}@uclouvain.be

†Universitat Politècnica de Catalunya
llorenc@ac.upc.edu

‡Politecnico di Torino
idilio.drago@polito.it

Abstract—QUIC is a new transport protocol under standard-
ization since 2016. Initially developed by Google as an experi-
ment, the protocol is already deployed in large-scale, thanks to
its support in Chromium and Google’s servers. In this paper
we experimentally analyze the performance of QUIC in WiFi
networks. We perform experiments using both a controlled WiFi
testbed and a production WiFi mesh network. In particular,
we study how QUIC interplays with MAC layer features such
as IEEE 802.11 frame aggregation. We show that the current
implementation of QUIC in Chromium achieves sub-optimal
throughput in wireless networks. Indeed, burstiness in modern
WiFi standards may improve network performance, and we show
that a Bursty QUIC (BQUIC), i.e., a customized version of QUIC
that is targeted to increase its burstiness, can achieve better
performance in WiFi. BQUIC outperforms the current version
of QUIC in WiFi, with throughput gains ranging between 20%
to 30%.

I. INTRODUCTION

With the exponential growth in adoption of mobile phones
and other smart connected devices, the usage of wireless
networks continues to grow. Today, wireless networks are
commonplace in every sector of life including homes, offices,
restaurants, hospitals and university campuses. In a recent
Cisco white paper [1] it is predicted that wireless and mobile
device traffic will exceed that of PCs, and comprise more than
63 percent of total IP traffic by 2021. There is a continuous
increase in user demand for richer mobile web content and
reduced loading time. At the same time, complex applications
and web content put a large computational burden on mobile
devices, which are in general more resource-constrained than
PCs and laptops.

Nonetheless, technological advancements have allowed to
overcome these issues and provide better user experience. On
one hand, WiFi technologies, which are based on the IEEE
802.11 standards, have undergone an enormous evolution in
the recent years [2]. For instance, the 802.11n standard, which
is predominant nowadays, allows coding schemes (MCS)
that support data rates up to 600 Mbps. It also includes a
high throughput enhancement called frame aggregation, which
consists of combining two or more data frames into a single
transmission, thus reducing the fixed overhead associated with
each frame transmission. On the other hand, efforts from
content providers in developing customized mobile versions
of websites and new low-latency transport protocols such as
QUIC have contributed to improve user experience. QUIC
started as an experimental protocol designed by Google and
has emerged as a serious alternative to TCP. In a recent

measurement study [3], it was estimated that around 7% of
the Internet traffic is QUIC.

In this paper we experimentally analyze the performance of
QUIC in WiFi networks. We start from the observation that
Chromium’s implementation of QUIC (version 39) has sub-
optimal performance in WiFi. We then investigate root-causes
for the problem, finding that some of the QUIC features in
Chromium impair the protocol performance in WiFi networks.

In particular, bursty traffic has been traditionally considered
undesirable, since it can lead to longer queuing delays and
multiple consecutive losses which are more difficult to recover.
This fact has motivated QUIC to be designed with packet
pacing [4], with the aim to reduce burstiness and, thus, packet
losses. While this consequence is generally true in wired
networks, we observe that due to the characteristics of the
WiFi medium and interactions between transport and MAC
protocols, bursty traffic might actually be beneficial in WiFi.
One apparent reason for this behavior is frame aggregation. As
mentioned above, frame aggregation is a key feature to achieve
high throughput in recent 802.11 standards and burstiness
increases aggregation opportunities.

Therefore, we implement and evaluate a Bursty QUIC
(BQUIC) in Chromium, which is a customized version of
QUIC targeted to increase traffic burstiness by reducing
the transport layer acknowledgment frequency and disabling
packet pacing. We show the advantage of BQUIC for two
different use cases of WiFi: (i) in home or enterprise wireless
local area networks (WLANs), and (ii) wireless mesh networks
(WMN) such as Guifi.net, MadMesh, Merkai and Google
WiFi. We analyze these use cases by taking measurements in
a lab and a production WMN. Our experimental results show
that increasing burstiness of QUIC improves its throughput in
WiFi, with gains ranging between 20% to 30%.

Our results are a step forward for understanding perfor-
mance trade-offs in QUIC. They can help in the design of
the standard protocol, which would extract better performance
from lower layer protocols. Since layer-2 protocols in wired
and wireless networks are nowadays significantly different,
we believe that the transport protocol can be improved by
individually tuning it for both networks.

II. BACKGROUND AND RELATED WORK

A. 802.11 and frame aggregation

802.11 is a set of IEEE standards that regulate wireless
transmission. A recent measurement study [5] with millions of
Cisco Meraki access points (APs) shows that around 99% of



the APs use the 802.11n and 802.11ac standards. These stan-
dards introduce enhancements to increase data rates. Among
them, frame aggregation is a simple method to enhance
throughput.

The wireless medium has a high overhead, which includes
the MAC and PHY headers, acknowledgments (ACK), backoff
time and inter-frame spacing. For ACKs and small segments,
the overhead in terms of bytes can be higher than the actual
payload. The frame aggregation scheme amortizes this over-
head and achieves high data throughput by combining multiple
data frames into a single transmission unit.

Aggregation in WiFi MAC architecture is supported at two
layers. In the first layer multiple MAC service data units
(MSDUs) are aggregated into an A-MSDU. In the second
layer multiple A-MSDUs are combined to form an aggregated
A-AMPDU. A detailed description of these concepts can be
found in [6]. Their impact on throughput have also been
extensively evaluated [7], [6], [8]. We here evaluate how to
profit from the mechanisms to improve QUIC performance.

B. QUIC protocol

QUIC is a user-space transport protocol running on top of
UDP. QUIC provides several cross-layer enhancements, cover-
ing the weaknesses of TCP for transporting web content. For
example, in the case of HTTP/2 running over TLS and TCP,
the loss of a single TCP packet blocks all HTTP/2 streams,
since a single connection is shared by all streams. QUIC
instead is designed to handle the streams, thus eliminating
head-of-line blocking delays in case of a packet loss.

QUIC profits from recent advances in TLS, implementing
new TLS 1.3 concepts such as zero handshake latency. That
is, QUIC is able to reduce latency by reusing credentials of
known servers on repeated connections. QUIC also provides
an improved congestion controller, better RTT estimation, and
a better loss recovery mechanism than TCP.

QUIC is still under development, thus its features and
operations are not completely standardized yet. To understand
its internal workings, we have studied the QUIC source code
in the open-source Chromium project [9]. Our experiments in
this paper have been performed with QUIC version 39.

Two aspects of QUIC implementation particularly influence
how the protocol interacts with 802.11 frame aggregation: (i)
acknowledgment modes, and (ii) packet pacing.

1) QUIC acknowledgment modes: Chromium’s implemen-
tation of QUIC includes two acknowledgment modes:

• TCP ACKING: This mode is similar to TCP delayed
acknowledgment, in which an ACK is generated for every 2
received packets in accordance with RFC 1122. This was the
default mode of QUIC in Chromium at the time of writing.

• ACK DECIMATION: In this mode acknowledgments
are delayed up to a maximum of 10 packets (unless
unlimited_decimation is enabled) and a cumulative
ACK is generated. The maximum duration for which the ACK
can be delayed is 25 ms and the actual delay_time is calcu-
lated on the fly as the minimum between max_delay_time

and one quarter of minimum RTT observed during the session.
The ACK_DECIMATION is only considered after at least 100
packets have been received to avoid interfering with slow start.
This mode was disabled in Chromium at the time of writing. In
either mode, if an out-of-order packet or a previously missing
packet is received, the ACK is sent without any delay to inform
the sender immediately about it.

2) Packet pacing: Chromium’s implementation of QUIC
includes a packet pacing mechanism that aims to reduce send-
ing bursts of packets by introducing delay between consecutive
packets. Reducing traffic burstiness is known to prevent con-
gestion and, as a consequence, reduce the undesirable effects
of packet loss. However, it may also hinder performance in
high-speed networks with low loss rates.

C. Transport protocols enhancements for WiFi
To the best of our knowledge, no previous work has evalu-

ated the performance of QUIC in WiFi by exploring its inter-
actions with the wireless medium and 802.11 enhancements
such as frame aggregation. However, given the popularity of
TCP, it is not a surprise that previous works have targeted
similar problems in TCP deployments.

Considering the role of TCP acknowledgments for the
protocol reliability, reducing the acknowledgement frequency
and performing delayed cumulative acknowledgements may
provide benefits in wireless networks. Many works propose to
reduce TCP acknowledgement frequency in wireless networks.
Altman el. al [10] investigated the impact of increasing the
TCP delayed acknowledgement mechanism to more than two
segments as recommended by RFC 1122. Singh et. al [11]
propose TCP with adaptive delayed acknowledgement, which
aims to reduce the number of ACKs to one per congestion
window. Oliveira el. al [12] propose Dynamic Adaptive Ac-
knowledgement where the delay window is adjusted according
to the channel condition. In [13], the same authors provide
an improved delaying window strategy for robustness against
losses.

These works agree that a key factor affecting TCP perfor-
mance in wireless networks is the contention and collision be-
tween ACK and data packets. Reducing the number of ACKs
saves wireless resources and reduces interferences with other
packets. Moreover, lowering the ACK frequency increases
burstiness of traffic as the sender releases a micro burst of
packets after receiving the cumulative ACK. This behavior
may reduce the inter-packet time increasing the opportunities
for frame aggregation at the 802.11 MAC layer.

The closest work to ours is [14], which provides a deep view
on QUIC performance. The authors show, for example, that
since QUIC runs on user-space it incurs performance penalties
particularly for mobile devices that are usually constrained
by processing power. We extend the knowledge about QUIC
performance here, showing how the protocol interacts with
features of lower-layer protocols in WiFi.

III. METHODOLOGY

We now describe our methodology, covering our customiza-
tion to Chromium’s QUIC implementation (Sec. III-A), our



test environment (Sec. III-B and Sec. III-C) and the perfor-
mance metrics used in the experiments (Sec. III-D). The results
presented in the evaluation have been obtained parsing traces
captured with tcpdump.

A. Bursty QUIC

Our goal is to study QUIC’s behavior and improve its
performance in WiFi networks. Based on the observations
in the previous section, we believe that the (non)burstiness
of QUIC traffic cannot fully exploit frame aggregation in
WiFi MAC layer. Therefore, we tune QUIC to produce
bursty traffic: We have compiled a version of Chromium with
ACK_DECIMATION as default acknowledgment mode and
without packet pacing. Disabling packet pacing is important
since it can neutralize the effect of burstiness created by
ACK_DECIMATION. These two features are not controllable
from the browser configuration — we had to study the source
code and make required modifications. We call this tuned
version Bursty QUIC (BQUIC).

We focus only on WiFi and do not evaluate the scenarios
with wired or hybrid connectivity between client and server.
There are concerns about the impact of high burstiness on
packet drops and queuing delays in wired networks, particu-
larly in long Internet paths. However, we will show that the
performance gains in the WiFi environment are high and can
potentially overshadow other effects. Moreover, in real-world
scenarios service providers are increasingly deploying caches
and CDN nodes closer to end-users [15]. Thus, the scenario
tested in the following is already popular and tends to become
widespread as more servers are deployed closer to users.

In the following experiments we place the server geograph-
ically close to the clients i.e., at WiFi access point or mesh
network gateway, with an average RTT in the range of 6 ms to
10 ms between the clients and server. Performing experiments
on Internet-wide scale are left for future work. We carry out
experiments in two testbeds (i) a controlled lab and (ii) a real
production mesh network.

B. Lab testbed

Our lab testbed consists of a client connected to a WiFi
router, all using 802.11n. The WiFi router in our testbed is
connected to a server through a Gigabit Ethernet connection.
We use two devices as clients (i) an Android smartphone with
ARM Cortex A-57 quad-core CPU and 2 GB RAM running
Android 6.0 and (ii) a Raspberry PI 3 (RPi) having quad-
core ARM Cortex-A53 CPU and 1 GB RAM running Debian
9. The server in our testbed has a quad-core Intel Core i5-
3470 CPU and 8 GB RAM running Ubuntu 16.04. We cross-
compile chromium browser with QUIC and BQUIC for ARM
and Android and deploy it on the respective clients.

C. Wireless community network

Our second testbed is a production wireless community
network deployed in a neighborhood of the city of Barcelona
(Spain) called Sants [16]. The network was started in 2009
and in 2012 was joined by nodes installed at Universitat

Politècnica de Catalunya (UPC) within the EU CONFINE
project [17]. The network is operative since 2009. The nodes
use the linux/openwrt [18] based distribution provided by the
Quick Mesh Project (QMP) [19], which runs the BMX6 mesh
routing protocol [20]. From now on we will refer to this
network as QMPSU. QMPSU is part of a larger community
network started in 2004, which has more than 30.000 operative
nodes called Guifi.net [21]. At the time of writing QMPSU
has around 80 active nodes. Fig. 1 shows the geographic
location of active nodes and links, using distinct colors to
represent wireless links configured with different channels. In
QMPSU there are 2 gateways that connect QMPSU to the rest
of Guifi.net and the Internet.

0.0

0.5

1.0

1.5

2.0

0 2 4
x (km)

y
(k

m
)

RP4

RP2
RP3

RP5

RP1
UPC Campus Nordserver

Figure 1: QMPSU geographical topology. Colors indicate links
configured in the same WiFi channel.

QMPSU is 802.11an-based and the most common hardware
is the Ubiquiti NanoStation M5, equipped with a sectorial an-
tenna and running QMP firmware. There are also a number of
point-to-point links using Ubiquiti parabolic antennas running
the original manufacturer firmware. QMPSU also has a live
monitoring web page updated hourly. A detailed description
of QMPSU can be found in [22], and a live monitoring page
updated hourly can be accessed on-line [23].

QMPSU has been deployed by its own users. Its unplanned
spread out using heterogeneous WiFi devices in an urban area
has produced a high diversity on the quality of the links. Thus,
it offers a very realistic testbed to evaluate the performance of
QUIC under a variety of conditions.

We deploy five RPi clients attached using the Ethernet port
to the premises of different volunteers across the QMPSU
network. Moreover, we set up a server in one of the gateways
of QMPSU to the Internet. Nodes are marked as RP or server
respectively in Fig. 1.

The server has an Intel dual-core CPU and 8 GB RAM,
running Ubuntu 16.04. The hardware specifications of the RPi
are similar to the smartphone used in the Lab testbed, and we
will show later that lab results with smartphone and RPi are
quite similar. For this reason we only use RPis for experiments
in QMPSU for convenience of deployment and maintenance.
Tab. I shows the number of wireless hops from the clients
to the gateway (W-hops). Note that many of these hops use
different frequencies and thus are not interfering with each
other.



Table I: Characteristics of the client locations.

RP Name W-hops

RP1 BCNevaristoarnus5Rd3-BPi 4
RP2 GS-BCNpisuerga17Rd1 3
RP3 GS26gener10-8710 3
RP4 GSgV-rb-dce0 1
RP5 BCNJardiBotanicSants186-ba35 5

Table II: Statistics of cloned web pages with the number of
objects of various file types.

Website HTML CSS JS Image Other Total Size
(kB)

Google 2 1 3 5 1 12 56
Live 2 2 2 2 0 8 262

Twitter 6 1 4 2 3 16 421
Wikipedia 1 1 2 20 1 25 441

Reddit 4 2 5 26 2 39 470
Yahoo 16 13 5 48 4 86 839
Ebay 4 1 6 3 14 28 985

Instagram 3 1 7 25 1 37 1 409
YouTube 8 3 5 113 20 149 2 911
Facebook 1 1 8 123 1 134 3 560
Amazon 5 2 14 41 2 64 3 723

D. Measuring performance

We have selected 10 websites from Alexa’s top 100 list,
downloaded their landing pages and other publicly available
pages and hosted them on our servers. The selected websites
are a mix of social networks, online shopping, news and search
engines. The main characteristics of the cloned pages are
summarized in Tab. II.

We load these pages from the clients using the default
Chromium QUIC implementation and BQUIC. To automate
the page loading we use Chrome-HAR-capturer1 to connect
to remote clients in the lab or WMN and repeatedly load the
pages multiple times while capturing traffic at both client and
server sides.

We parse the HAR file and the captured traffic to calculate
various metrics such as the page load time (PLT), throughput,
and packet inter-arrival time over 30 runs. We also analyze
data segments and ACK packets. We compute throughput by
dividing the amount of bits sent in the UDP payloads of
the QUIC connections over the time of the transfer, ignoring
connection establishment time. We have also instrumented the
web server to log the CWND size on every acknowledgment.

To emulate bulk file transfers, we have created a synthetic
web page with a large image of 10 MB that we have
downloaded in 100 runs over 10 days from the lab nodes and
the mesh nodes. We calculate the mean throughput and 95%
confidence interval for all runs. We also compute the relative
improvement achieved by BQUIC, referred to as gain.

IV. EVALUATION

A. Bulk transfer throughput

Tab. III shows the mean values of the measured throughput
and end-to-end % loss obtained by downloading our 10 MB

1https://github.com/cyrus-and/chrome-har-capturer

Table III: Performance comparison of QUIC and BQUIC

Throughput (Mbps) Loss rate (%)

Device QUIC BQUIC Gain QUIC BQUIC

L
ab Android 34.8 43.8 26% - -

RPi 42.38 52.3 23% - -

M
es

h
ne

tw
or

k RP1 8.2 10.6 29% 0.63 0.8
RP2 1.97 2.54 28% 0.79 1.23
RP3 12.8 15.5 20% 0.36 0.4
RP4 20.9 27.2 30% 0.01 0.01
RP5 18.6 24.5 31% 0.05 0.06

synthetic web page during the 100 runs. The losses have been
computed by comparing the identification field of the IP header
of transmitted and received datagrams. We have computed the
95% confidence intervals for throughput, and they are small
in all cases (less than 10%). In the lab testbed, we can see that
the RPi achieves higher throughput than the smartphone. This
is mainly because the antenna gain of the RPi is higher than in
the smartphone, and thus, the network card can use MCS with
higher bitrates during the transfer. However, the throughput
gain of BQUIC over QUIC is similar for both devices (26%
and 23% in the smartphone and the RPi, respectively).

Regarding the losses measured at the transport layer, Tab. III
shows that they are negligible. This is normal on a WiFi link
of an acceptable quality, since 802.11 retransmits lost unicast
frames multiple times before abandoning its transmission.
Indeed, the worst connected device (RP2) has a loss of only
0.79% in QUIC and 1.23% in BQUIC. We can see that the loss
rate slightly increases in BQUIC, but it is negligible. More-
over, the high throughput gain achieved in BQUIC surpasses
the negative effects.

Notice that there are significant differences between the
client in terms of delays, number of hops and link capacities,
which is expected as it is a production network. Despite these
differences and the large variations of measured throughput
between mesh nodes (1.97 Mbps for RP2 and 20.9 Mbps for
RP4 with QUIC) we observe significant performance improve-
ments (between 20% and 31%) in all cases. Since there are too
many factors such as the antenna hardware, firmware, wireless
link conditions etc. for each node, investigating the low level
details to find the root cause of the observed differences is out
of scope of this paper. Our main objective is to experimentally
show that burstiness increases performance of QUIC in WiFi.

B. Web page load time

In order to see the impact of BQUIC upon different types
of web browsing we perform experiments using the cloned
websites. RP5 is used as client. Fig. 2 shows the mean PLT
for various cloned web pages which are summarized in Tab. II.
Using BQUIC we observe a decrease in PLT for all websites
ranging from 5% for small web pages such as Google and
Live up to 25% for large web pages such as Amazon and
Facebook. We can see that the larger the page is, the larger
is the reduction of the PLT. This is an expected result, since



 0

 5

 10

 15

 20

 25

 30

go
og

le liv
e

tw
itte

r

wiki
ped

ia
red

dit
yah

oo eba
y

ins
tag

ram

fac
ebo

ok

am
azo

n

Tr
an

sf
er

 ti
m

e 
re

du
ct

io
n(

%
)

Figure 2: Relative reduction in PLT achieved for various
websites by using BQUIC vs QUIC

60

80

100

120

0 1 2 3 4
time [s]

cw
nd

(k
by

te
s)

QUIC
BQUIC

Figure 3: CWND size comparison

the connection establishment, which includes the exchange of
certificates, has a larger relative overhead for small web pages.

C. Detailed analysis

To better understand the difference in behavior of QUIC
and BQUIC, we now perform a detailed analysis for one of
the experimental runs from Section IV-A with RP5 node. We
observe similar trends for the other nodes, albeit to different
extent.

1) CWND size: We instrument the web server to log the
size of the congestion window upon each acknowledgement.
Fig. 3 shows the CWND size of standard QUIC and BQUIC.
We can see that QUIC exits from slow start phase much earlier
than BQUIC and thus achieves lower throughput. In QUIC
the slow start phase exits when increasing delay is detected.
The detection algorithm is called on every new ACK frame
and a new RTT measurement is performed. If the minimum
delay of the first few packets of the current burst exceeds the
minimum delay during the session by a certain threshold, the
slow start phase exits. The early exit from slow start in QUIC
is conceivably due to packet pacing which reduces aggregation
opportunities and allows only a few packets to be transmitted
together. The next packets get transmitted in separate unit after
gaining access to the wireless medium which injects extra
delay. The increased delay is detected by the algorithm and it
exits slow start. In BQUIC there is no packet pacing and the
inter packet time is much smaller which allows a large number
of consecutive packets to be aggregated and transmitted as part
of a single unit. Therefore the CWND increases to a much
larger value before exiting slow start.

2) Sequence-Acknowledgement analysis: Fig. 4 shows the
ACK reception (blue vertical bar) and packet transmission
(yellow circle) at the sender side during an interval of 20 ms.

2.510 2.515 2.520 2.525

4480
4490
4500
4510

5700
5730
5760
5790
5820

time [s]

pa
ck

et
nu

m
be

r

Q
U

IC
B

Q
U

IC

Figure 4: Transmission of data packets (circles) and reception
of ACKs (vertical bars) at the sender side

0.18

0.89

0.0

0.5

1.0

1.5

0.00
0.25
0.50
0.75
1.00

10 1 10 2 10 3 10 4

inter packet time [µs] (log10 scale)

co
un

t×
10

3
E

C
D

F

QUIC
BQUIC

QUIC
BQUIC

Figure 5: Inter packet time histogram and ECDF

The effect of packet pacing in QUIC can be observed in the
upper sub-figure where segments are mostly evenly spaced
from one another. In the middle of the figure many ACKs
are received together and as a consequence many segments
are transmitted by the sender, which can be observed by
a steeper slope. The bottom sub-figure represents BQUIC.
The figure shows much less ACKs in the interval, due to
ACK_DECIMATION. Furthermore, since a large window is
acknowledged by each ACK and pacing is disabled, a burst
of packets is released shortly after an ACK is received.

3) Inter packet time: We measure the inter packet time
(IPT) at the server side to get a better insight into the different
acknowledgement strategies. Fig. 5 shows the IPT histogram
(upper sub-figure) and empirical cumulative distribution func-
tion, ECDF (lower sub-figure). We can see that in BQUIC
89% packets are sent with an IPT lower than 100µs, while
in QUIC this value is only 18%. The histogram shows two
peaks in QUIC around 100 µs and 500 µs due to different
pacing rates used by QUIC during this execution. The pacing
rate is decided by QUIC on the fly depending on the link
conditions such as bandwidth, RTT etc., and varies between
different nodes in the mesh and even different runs using the
same node. On the other hand, BQUIC IPT is very small and
is concentrated around 30 µs.

4) Throughput: Fig. 6 shows the throughput of QUIC and
BQUIC computed by averaging over intervals of 50 ms during
the bulk transfer time (recall that we compute the throughput



mean=20.1, σ = 8.5

mean=26.1, σ = 9.1

0 1 2 3 4

0
10
20
30
40

0
10
20
30
40

time [s]

th
ro

ug
hp

ut
[M

bp
s]

Q
U

IC
B

Q
U

IC

Figure 6: Throughput

trimming out the connection establishment time). As shown
in the figure, the overall throughput increases from 20.1 Mbps
in QUIC, to 26.1 Mbps in BQUIC (30% gain). Note that,
despite BQUIC being more bursty than QUIC at packet level,
as shown before, Fig. 6 depicts similar variations of throughput
at larger time scale. Indeed, the standard deviation of the
throughput measured at 50 ms intervals increases only from
8.5 in QUIC to 9.1 in BQUIC (7%).
Takeaway: Increasing burstiness of QUIC in WiFi provides
significant gain in throughput without introducing many neg-
ative effects such as packet losses or high jitter.

V. CONCLUSIONS

We analyzed the performance of QUIC in WiFi, investi-
gating the interactions of the protocol with 802.11 frame ag-
gregation. We first highlighted that Chromium’s QUIC (v.39)
delivers sub-optimal throughput in typical WiFi scenarios. The
root-cause is the way QUIC paces packets in the network and
its acknowledgment mechanisms. Whereas these mechanisms
are desirable to reduce packet loss in Internet paths, they
prevent QUIC from benefiting from frame aggregation.

We implemented and evaluated BQUIC, i.e., a customized
version of QUIC that increases traffic burstiness and, thus,
opportunities for frame aggregation in WiFi. We carried out
experiments using both a controlled testbed and a production
WMN. Results showed that BQUIC increases the throughput
between 20% to 30% with respect to current Chromium’s
implementation of the protocol.

Since our results are true for WiFi only and burstiness may
be undesirable in some other scenarios, we believe that the
protocol could be tuned for particular cases, e.g., enabling
BQUIC whenever applications are running on WiFi. Perform-
ing experiments on an hybrid scenario combining WiFi and
Internet-wide scale are left for future work.

ACKNOWLEDGMENTS

This work was supported by the Erasmus Mundus Joint
Doctorate in Distributed Computing EMJD-DC program, the
Spanish grant TIN2016-77836-C2-2-R, and Generalitat de
Catalunya through 2017-SGR-990.

REFERENCES

[1] (2017) Cisco Visual Networking Index. [Online]. Available:
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/complete-white-paper-c11-481360.pdf

[2] G. R. Hiertz, D. Denteneer, L. Stibor, Y. Zang, X. P. Costa, and B. Walke,
“The ieee 802.11 universe,” IEEE Communications Magazine, vol. 48,
no. 1, 2010.

[3] A. Langley et al., “The quic transport protocol: Design and internet-scale
deployment,” in Proceedings of the SIGCOMM, 2017, pp. 183–196.

[4] F. Gratzer, “Quic-quick udp internet connections,” Future Internet and
Innovative Internet Technologies and Mobile Communications, 2016.

[5] A. Bhartia, B. Chen, F. Wang, D. Pallas, R. Musaloiu-E, T. T.-T. Lai, and
H. Ma, “Measurement-based, practical techniques to improve 802.11 ac
performance,” in Internet Measurement Conference. ACM, 2017, pp.
205–219.

[6] D. Skordoulis, Q. Ni, H. h. Chen, A. P. Stephens, C. Liu, and A. Ja-
malipour, “Ieee 802.11n mac frame aggregation mechanisms for next-
generation high-throughput wlans,” IEEE Wireless Communications,
vol. 15, no. 1, pp. 40–47, February 2008.

[7] B. S. Kim, H. Y. Hwang, and D. K. Sung, “Effect of frame aggregation
on the throughput performance of ieee 802.11n,” in 2008 IEEE Wireless
Communications and Networking Conference, March 2008, pp. 1740–
1744.

[8] Y. Lin and V. W. S. Wong, “Wsn01-1: Frame aggregation and optimal
frame size adaptation for ieee 802.11n wlans,” in IEEE Globecom 2006,
Nov 2006, pp. 1–6.

[9] (2018) QUIC, a multiplexed stream transport over UDP. [Online].
Available: https://www.chromium.org/quic/

[10] E. Altman and T. Jiménez, “Novel delayed ack techniques for improving
tcp performance in multihop wireless networks,” in IFIP International
Conference on Personal Wireless Communications. Springer, 2003, pp.
237–250.

[11] A. K. Singh and K. Kankipati, “Tcp-ada: Tcp with adaptive delayed
acknowledgement for mobile ad hoc networks,” in Wireless Communi-
cations and Networking Conference, vol. 3. IEEE, 2004, pp. 1685–
1690.

[12] R. De Oliveira and T. Braun, “A dynamic adaptive acknowledgment
strategy for tcp over multihop wireless networks,” in INFOCOM 2005,
vol. 3. IEEE, 2005, pp. 1863–1874.

[13] ——, “A smart tcp acknowledgment approach for multihop wireless
networks,” IEEE Transactions on Mobile Computing, vol. 6, no. 2, pp.
192–205, 2007.

[14] A. M. Kakhki, S. Jero, D. Choffnes, C. Nita-Rotaru, and A. Mislove,
“Taking a long look at quic,” in Proceedings of the 2017 Internet
Measurement Conference, 2017.

[15] M. Trevisan, D. Giordano, I. Drago, M. Mellia, and M. Munafò, “Five
years at the edge: Watching internet from the isp network,” to appear in
Proceedings of CoNEXT’18, Heraklion, Greece, 2018.

[16] “Sants-UPC Community Newtork,” http://sants.guifi.net.
[17] “Community Networks Testbed for the Future Internet, CONFINE,” http:

//confine-project.eu/, FP7 European Project 288535.
[18] “OpenWrt Linux distro. for embedded devices,” https://openwrt.org.
[19] “Quick Mesh Project,” http://qmp.cat.
[20] L. Cerdà-Alabern, A. Neumann, and L. Maccari, “Experimental evalua-

tion of bmx6 routing metrics in a 802.11 an wireless-community mesh
network,” in Future Internet of Things and Cloud (FiCloud). IEEE,
2015, pp. 770–775.

[21] “Open, Free and Neutral Network Internet for everybody,” http://guifi.
net/en.

[22] L. Cerdà-Alabern, A. Neumann, and P. Escrich, “Experimental evalua-
tion of a wireless community mesh network,” in MSWiM’13. Barcelona,
Spain: ACM, Nov. 3–8, 2013.

[23] “qMp Sants-UPC monitoring page,” http://dsg.ac.upc.edu/qmpsu.


